Atomic-Molecular Ionization by Electron Scattering

Atomic-Molecular Ionization by Electron Scattering PDF Author: K. N. Joshipura
Publisher: Cambridge University Press
ISBN: 1108498906
Category : Science
Languages : en
Pages : 286

Get Book Here

Book Description
Covers quantum scattering theories, experimental and theoretical calculations and applications in a comprehensive manner.

Atomic-Molecular Ionization by Electron Scattering

Atomic-Molecular Ionization by Electron Scattering PDF Author: K. N. Joshipura
Publisher: Cambridge University Press
ISBN: 1108498906
Category : Science
Languages : en
Pages : 286

Get Book Here

Book Description
Covers quantum scattering theories, experimental and theoretical calculations and applications in a comprehensive manner.

Atomic-Molecular Ionization by Electron Scattering

Atomic-Molecular Ionization by Electron Scattering PDF Author: K. N. Joshipura
Publisher: Cambridge University Press
ISBN: 1108574750
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
A comprehensive and up-to-date text in the field of electron scattering and ionization, covering fundamentals, experimental background, quantum scattering theories and applications. Electron impact ionization of atoms and molecules in ground/metastable states is discussed comprehensively. The text covers electron scattering phenomena for diatomic and common molecules, polyatomic molecules and radicals including hydro-carbons, fluoro-carbons and other larger molecules together with relevant radical species in detail. Applications of electron impact ionization and excitation in gaseous or plasma and condensed matter is discussed in a separate chapter. Recent advances in the field of electron molecule scattering and ionization for polyatomic molecules is covered extensively.

Electron Scattering

Electron Scattering PDF Author: Colm T. Whelan
Publisher: Springer Science & Business Media
ISBN: 0387275673
Category : Science
Languages : en
Pages : 342

Get Book Here

Book Description
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.

Electron-Molecule Interactions and Their Applications

Electron-Molecule Interactions and Their Applications PDF Author: L Christophorou
Publisher: Elsevier
ISBN: 0323143016
Category : Science
Languages : en
Pages : 716

Get Book Here

Book Description
Electron-Molecule Interactions and Their Applications, Volume 1 presents a comprehensive account of electron-molecule interactions in high- and ultra-high-pressure gases and liquids. Topics covered include elastic scattering of electrons by molecules; excitation, ionization, and dissociation of molecules by electron impact; electron-molecule resonances; and electron attachment and detachment processes. This volume is comprised of seven chapters and begins with a discussion on non-resonant elastic scattering and rotational excitation of molecules by electrons, followed by a review of non-resonant vibrational and electronic excitation. The reader is then introduced to resonance effects in electron scattering; electron-induced ionization and dissociation of molecules; and electron-molecule resonances. The ionization mechanisms and types of ions produced are highlighted, along with differential ionization cross sections. The final two chapters focus on electron attachment and detachment processes, paying particular attention to modes of electron capture by molecules such as via negative-ion resonant states. The collisional dynamics for a few selected atomic reactants are also described. Physicists will find this book extremely helpful.

Computational Methods for Electron—Molecule Collisions

Computational Methods for Electron—Molecule Collisions PDF Author: Franco A. Gianturco
Publisher: Springer Science & Business Media
ISBN: 1475797974
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.

Advances in Atomic and Molecular Physics

Advances in Atomic and Molecular Physics PDF Author: David Robert Bates
Publisher:
ISBN:
Category : Atoms
Languages : en
Pages : 312

Get Book Here

Book Description


Computational Atomic Physics

Computational Atomic Physics PDF Author: Klaus Bartschat
Publisher: Springer
ISBN: 3642610102
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.

Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics PDF Author:
Publisher: Academic Press
ISBN: 0123810302
Category : Science
Languages : en
Pages : 371

Get Book Here

Book Description
This volume continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume. - International experts - Comprehensive articles - New developments

Relativistic Quantum Theory of Atoms and Molecules

Relativistic Quantum Theory of Atoms and Molecules PDF Author: Ian P Grant
Publisher: Springer Science & Business Media
ISBN: 0387350691
Category : Science
Languages : en
Pages : 813

Get Book Here

Book Description
This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.

Attosecond Molecular Dynamics

Attosecond Molecular Dynamics PDF Author: Marc J J Vrakking
Publisher: Royal Society of Chemistry
ISBN: 1788015134
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump–probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called “post-Born-Oppenheimer dynamics”, where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.