Author: Alan Corney
Publisher: Oxford University Press, USA
ISBN: 0199211450
Category : Science
Languages : en
Pages : 782
Book Description
This book discusses many advances in optical physics and is intended mainly for experimentalists. The interaction of electromagnetic radiation with free atoms is introduced using classical or semi-classical calculations wherever possible. Topics discussed include the spontaneous emission of radiation, and atomic beam magnetic resonance experiments.
Atomic and Laser Spectroscopy
Author: Alan Corney
Publisher: Oxford University Press, USA
ISBN: 0199211450
Category : Science
Languages : en
Pages : 782
Book Description
This book discusses many advances in optical physics and is intended mainly for experimentalists. The interaction of electromagnetic radiation with free atoms is introduced using classical or semi-classical calculations wherever possible. Topics discussed include the spontaneous emission of radiation, and atomic beam magnetic resonance experiments.
Publisher: Oxford University Press, USA
ISBN: 0199211450
Category : Science
Languages : en
Pages : 782
Book Description
This book discusses many advances in optical physics and is intended mainly for experimentalists. The interaction of electromagnetic radiation with free atoms is introduced using classical or semi-classical calculations wherever possible. Topics discussed include the spontaneous emission of radiation, and atomic beam magnetic resonance experiments.
Principles of Laser Spectroscopy and Quantum Optics
Author: Paul R. Berman
Publisher: Princeton University Press
ISBN: 1400837049
Category : Science
Languages : en
Pages : 538
Book Description
Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)
Publisher: Princeton University Press
ISBN: 1400837049
Category : Science
Languages : en
Pages : 538
Book Description
Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)
Atomic and Molecular Spectroscopy
Author: Sune Svanberg
Publisher: Springer Science & Business Media
ISBN: 3642973981
Category : Science
Languages : en
Pages : 418
Book Description
A wide-ranging review of modern techniques in atomic and molecular spectroscopy. A brief description of atomic and molecular structure is followed by the relevant energy structure expressions. A discussion of radiative properties and the origin of spectra leads into coverage of X-ray and photoelectron spectroscopy, optical spectroscopy, and radiofrequency and microwave techniques. The treatment of laser spectroscopy investigates various tunable sources and a wide range of techniques characterized by high sensitivity and high resolution. Throughout this book, the relation between fundamental and applied aspects is shown, in particular by descriptions of applications to chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophysics.
Publisher: Springer Science & Business Media
ISBN: 3642973981
Category : Science
Languages : en
Pages : 418
Book Description
A wide-ranging review of modern techniques in atomic and molecular spectroscopy. A brief description of atomic and molecular structure is followed by the relevant energy structure expressions. A discussion of radiative properties and the origin of spectra leads into coverage of X-ray and photoelectron spectroscopy, optical spectroscopy, and radiofrequency and microwave techniques. The treatment of laser spectroscopy investigates various tunable sources and a wide range of techniques characterized by high sensitivity and high resolution. Throughout this book, the relation between fundamental and applied aspects is shown, in particular by descriptions of applications to chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophysics.
Femtosecond Laser Spectroscopy
Author: Peter Hannaford
Publisher: Springer Science & Business Media
ISBN: 038723294X
Category : Science
Languages : en
Pages : 350
Book Description
The embryonic development of femtoscience stems from advances made in the generation of ultrashort laser pulses. Beginning with mode-locking of glass lasers in the 1960s, the development of dye lasers brought the pulse width down from picoseconds to femtoseconds. The breakthrough in solid state laser pulse generation provided the current reliable table-top laser systems capable of average power of about 1 watt, and peak power density of easily watts per square centimeter, with pulse widths in the range of four to eight femtoseconds. Pulses with peak power density reaching watts per square centimeter have been achieved in laboratory settings and, more recently, pulses of sub-femtosecond duration have been successfully generated. As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. In molecular science the explosive growth of this research is for fundamental reasons. In femtochemistry and femtobiology chemical bonds form and break on the femtosecond time scale, and on this scale of time we can freeze the transition states at configurations never before seen. Even for n- reactive physical changes one is observing the most elementary of molecular processes. On a time scale shorter than the vibrational and rotational periods the ensemble behaves coherently as a single-molecule trajectory.
Publisher: Springer Science & Business Media
ISBN: 038723294X
Category : Science
Languages : en
Pages : 350
Book Description
The embryonic development of femtoscience stems from advances made in the generation of ultrashort laser pulses. Beginning with mode-locking of glass lasers in the 1960s, the development of dye lasers brought the pulse width down from picoseconds to femtoseconds. The breakthrough in solid state laser pulse generation provided the current reliable table-top laser systems capable of average power of about 1 watt, and peak power density of easily watts per square centimeter, with pulse widths in the range of four to eight femtoseconds. Pulses with peak power density reaching watts per square centimeter have been achieved in laboratory settings and, more recently, pulses of sub-femtosecond duration have been successfully generated. As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. In molecular science the explosive growth of this research is for fundamental reasons. In femtochemistry and femtobiology chemical bonds form and break on the femtosecond time scale, and on this scale of time we can freeze the transition states at configurations never before seen. Even for n- reactive physical changes one is observing the most elementary of molecular processes. On a time scale shorter than the vibrational and rotational periods the ensemble behaves coherently as a single-molecule trajectory.
Laser Spectroscopy and its Applications
Author: Richard W. Solarz
Publisher: Routledge
ISBN: 1351435612
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
Bringing together scattered literature from a range of sources, Laser Spectroscopy and ItsApplications clearly elucidates the tools and concepts of this dynamic area, and providesextensive bibliographies for further study.Distinguished experts in their respective fields discuss resonance photoionization, laser absorption,laser-induced breakdown, photodissociation, Raman scattering, remote sensing,and laser-induced fluorescence. The book also incorporates an overview of the semiclassicaltheory of atomic and molecular spectra.Combining background at an intermediate level with an in-depth discussion of specifictechniques, Laser Spectroscopy and Its Applications is essential reading for laser and opticalscientists and engineers; analytical chemists; health physicists; researchers in optical,chemical, pharmaceutical, and metallurgical industries. It will also prove useful for upperlevelundergraduate and graduate students of laser spectroscopy and its applications, andin-house seminars and short courses offered by firms and professional societies.
Publisher: Routledge
ISBN: 1351435612
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
Bringing together scattered literature from a range of sources, Laser Spectroscopy and ItsApplications clearly elucidates the tools and concepts of this dynamic area, and providesextensive bibliographies for further study.Distinguished experts in their respective fields discuss resonance photoionization, laser absorption,laser-induced breakdown, photodissociation, Raman scattering, remote sensing,and laser-induced fluorescence. The book also incorporates an overview of the semiclassicaltheory of atomic and molecular spectra.Combining background at an intermediate level with an in-depth discussion of specifictechniques, Laser Spectroscopy and Its Applications is essential reading for laser and opticalscientists and engineers; analytical chemists; health physicists; researchers in optical,chemical, pharmaceutical, and metallurgical industries. It will also prove useful for upperlevelundergraduate and graduate students of laser spectroscopy and its applications, andin-house seminars and short courses offered by firms and professional societies.
The Physics of Laser-Atom Interactions
Author: Dieter Suter
Publisher: Cambridge University Press
ISBN: 0521462398
Category : Science
Languages : en
Pages : 473
Book Description
A thorough introduction to the interaction of atoms with optical and magnetic fields; for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 0521462398
Category : Science
Languages : en
Pages : 473
Book Description
A thorough introduction to the interaction of atoms with optical and magnetic fields; for graduate students and researchers.
Atomic and Molecular Spectroscopy
Author: Rita Kakkar
Publisher: Cambridge University Press
ISBN: 1316395391
Category : Science
Languages : en
Pages : 440
Book Description
Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.
Publisher: Cambridge University Press
ISBN: 1316395391
Category : Science
Languages : en
Pages : 440
Book Description
Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.
Introduction to Laser Spectroscopy
Author: Halina Abramczyk
Publisher: Elsevier
ISBN: 0080455255
Category : Science
Languages : en
Pages : 331
Book Description
Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy
Publisher: Elsevier
ISBN: 0080455255
Category : Science
Languages : en
Pages : 331
Book Description
Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy
Laser Control of Atoms and Molecules
Author: V. S. Letokhov
Publisher: Oxford University Press on Demand
ISBN: 0198528167
Category : Science
Languages : en
Pages : 323
Book Description
This text treats laser light as a universal tool to control matter at the atomic and molecular level, one of the most exciting applications of lasers. Lasers can heat matter, cool atoms to ultra-low temperatures where they show quantum collective behaviour, and can act selectively on specific atoms and molecules for their detection and separation.
Publisher: Oxford University Press on Demand
ISBN: 0198528167
Category : Science
Languages : en
Pages : 323
Book Description
This text treats laser light as a universal tool to control matter at the atomic and molecular level, one of the most exciting applications of lasers. Lasers can heat matter, cool atoms to ultra-low temperatures where they show quantum collective behaviour, and can act selectively on specific atoms and molecules for their detection and separation.
High-Resolution Laser Spectroscopy
Author: K. Shimoda
Publisher: Springer
ISBN: 9783662312483
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
With contributions by numerous experts
Publisher: Springer
ISBN: 9783662312483
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
With contributions by numerous experts