Asymptotic Theory of Statistical Inference for Time Series

Asymptotic Theory of Statistical Inference for Time Series PDF Author: Masanobu Taniguchi
Publisher: Springer
ISBN: 9781461270287
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Asymptotic Theory of Statistical Inference for Time Series

Asymptotic Theory of Statistical Inference for Time Series PDF Author: Masanobu Taniguchi
Publisher: Springer
ISBN: 9781461270287
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Asymptotic Statistics

Asymptotic Statistics PDF Author: Reinhard Höpfner
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110367785
Category : Mathematics
Languages : en
Pages : 327

Get Book Here

Book Description
This textbook is devoted to the general asymptotic theory of statistical experiments. Local asymptotics for statistical models in the sense of local asymptotic (mixed) normality or local asymptotic quadraticity make up the core of the book. Numerous examples deal with classical independent and identically distributed models and with stochastic processes. The book can be read in different ways, according to possibly different mathematical preferences of the reader. One reader may focus on the statistical theory, and thus on the chapters about Gaussian shift models, mixed normal and quadratic models, and on local asymptotics where the limit model is a Gaussian shift or a mixed normal or a quadratic experiment (LAN, LAMN, LAQ). Another reader may prefer an introduction to stochastic process models where given statistical results apply, and thus concentrate on subsections or chapters on likelihood ratio processes and some diffusion type models where LAN, LAMN or LAQ occurs. Finally, readers might put together both aspects. The book is suitable for graduate students starting to work in statistics of stochastic processes, as well as for researchers interested in a precise introduction to this area.

Asymptotic Statistics

Asymptotic Statistics PDF Author: A. W. van der Vaart
Publisher: Cambridge University Press
ISBN: 9780521784504
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.

Asymptotic Analysis for Functional Stochastic Differential Equations

Asymptotic Analysis for Functional Stochastic Differential Equations PDF Author: Jianhai Bao
Publisher: Springer
ISBN: 3319469797
Category : Mathematics
Languages : en
Pages : 159

Get Book Here

Book Description
This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity.This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.

Asymptotic Analysis of Random Walks

Asymptotic Analysis of Random Walks PDF Author: A. A. Borovkov
Publisher: Cambridge University Press
ISBN: 1108901204
Category : Mathematics
Languages : en
Pages : 437

Get Book Here

Book Description
This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.

Asymptotic Theory of Weakly Dependent Random Processes

Asymptotic Theory of Weakly Dependent Random Processes PDF Author: Emmanuel Rio
Publisher: Springer
ISBN: 3662543230
Category : Mathematics
Languages : en
Pages : 211

Get Book Here

Book Description
Ces notes sont consacrées aux inégalités et aux théorèmes limites classiques pour les suites de variables aléatoires absolument régulières ou fortement mélangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'étude des processus faiblement dépendants aux statisticiens ou aux probabilistes travaillant sur ces processus.

Asymptotic Theory of Statistics and Probability

Asymptotic Theory of Statistics and Probability PDF Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 0387759700
Category : Mathematics
Languages : en
Pages : 726

Get Book Here

Book Description
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

Asymptotics in Statistics

Asymptotics in Statistics PDF Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 1461211662
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.

Statistical Methods for Stochastic Differential Equations

Statistical Methods for Stochastic Differential Equations PDF Author: Mathieu Kessler
Publisher: CRC Press
ISBN: 1439849765
Category : Mathematics
Languages : en
Pages : 507

Get Book Here

Book Description
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to th

Statistical Estimation

Statistical Estimation PDF Author: I.A. Ibragimov
Publisher: Springer Science & Business Media
ISBN: 1489900276
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.