Applied Asymptotic Methods in Nonlinear Oscillations

Applied Asymptotic Methods in Nonlinear Oscillations PDF Author: Yuri A. Mitropolsky
Publisher: Springer Science & Business Media
ISBN: 9401588473
Category : Technology & Engineering
Languages : en
Pages : 352

Get Book Here

Book Description
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs [6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations.

Applied Asymptotic Methods in Nonlinear Oscillations

Applied Asymptotic Methods in Nonlinear Oscillations PDF Author: Yuri A. Mitropolsky
Publisher: Springer Science & Business Media
ISBN: 9401588473
Category : Technology & Engineering
Languages : en
Pages : 352

Get Book Here

Book Description
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs [6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations.

Variational Methods in the Mechanics of Solids

Variational Methods in the Mechanics of Solids PDF Author: S. Nemat-Nasser
Publisher: Elsevier
ISBN: 1483145832
Category : Technology & Engineering
Languages : en
Pages : 429

Get Book Here

Book Description
Variational Methods in the Mechanics of Solids contains the proceedings of the International Union of Theoretical and Applied Mechanics Symposium on Variational Methods in the Mechanics of Solids, held at Northwestern University in Evanston, Illinois, on September 11-13, 1978. The papers focus on advances in the application of variational methods to a variety of mathematically and technically significant problems in solid mechanics. The discussions are organized around three themes: thermomechanical behavior of composites, elastic and inelastic boundary value problems, and elastic and inelastic dynamic problems. This book is comprised of 58 chapters and opens by addressing some questions of asymptotic expansions connected with composite and with perforated materials. The following chapters explore mathematical and computational methods in plasticity; variational irreversible thermodynamics of open physical-chemical continua; macroscopic behavior of elastic material with periodically spaced rigid inclusions; and application of the Lanczos method to structural vibration. Finite deformation of elastic beams and complementary theorems of solid mechanics are also considered, along with numerical contact elastostatics; periodic solutions in plasticity and viscoplasticity; and the convergence of the mixed finite element method in linear elasticity. This monograph will appeal to practitioners of mathematicians as well as theoretical and applied mechanics.

Asymptotic methods in mechanics of solids

Asymptotic methods in mechanics of solids PDF Author: Svetlana M. Bauer
Publisher: Birkhäuser
ISBN: 3319183117
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russian literature not well known for an English speaking reader makes this a indispensable textbook on the topic.

Mathematical Modelling of Solids with Nonregular Boundaries

Mathematical Modelling of Solids with Nonregular Boundaries PDF Author: A.B. Movchan
Publisher: CRC Press
ISBN: 9780849383380
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Mathematical Modelling of Solids with Nonregular Boundaries demonstrates the use of asymptotic methods and other analytical techniques for investigating problems in solid mechanics. Applications to solids with nonregular boundaries are described in detail, providing precise and rigorous treatment of current methods and techniques. The book addresses problems in fracture mechanics of inhomogeneous media and illustrates applications in strength analysis and in geophysics. The rigorous approach allows the reader to explicitly analyze the stress-strain state in continuous media with cavities or inclusions, in composite materials with small defects, and in elastic solids with sharp inclusions. Effective asymptotic procedures for eigenvalue problems in domains with small defects are clearly outlined, and methods for analyzing singularly perturbed boundary value problems are examined. Introductory material is provided in the first chapter of Mathematical Modelling of Solids with Nonregular Boundaries, which presents a survey of relevant and necessary information, including equations of linear elasticity and formulations of the boundary value problems. Background information - in the form of definitions and general solutions - is also provided on elasticity problems in various bounded and unbounded domains. This book is an excellent resource for students, applied scientists, and engineers.

Methods of Analysis and Solutions of Crack Problems

Methods of Analysis and Solutions of Crack Problems PDF Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9789001798604
Category : Science
Languages : en
Pages : 578

Get Book Here

Book Description
It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.

Asymptotic Analysis of Differential Equations

Asymptotic Analysis of Differential Equations PDF Author: R. B. White
Publisher: World Scientific
ISBN: 1848166079
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
"This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.

Linear and Nonlinear Waves in Microstructured Solids

Linear and Nonlinear Waves in Microstructured Solids PDF Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 1000372219
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.

Methods of Fracture Mechanics: Solid Matter Physics

Methods of Fracture Mechanics: Solid Matter Physics PDF Author: G.P. Cherepanov
Publisher: Springer Science & Business Media
ISBN: 9401722625
Category : Science
Languages : en
Pages : 334

Get Book Here

Book Description
Modern fracture mechanics considers phenomena at many levels, macro and micro; it is therefore inextricably linked to methods of theoretical and mathematical physics. This book introduces these sophisticated methods in a straightforward manner. The methods are applied to several important phenomena of solid state physics which impinge on fracture mechanics: adhesion, defect nucleation and growth, dislocation emission, sintering, the electron beam effect and fractal cracks. The book shows how the mathematical models for such processes may be set up, and how the equations so formulated may be solved and interpreted. The many open problems which are encountered will provide topics for MSc and PhD theses in fracture mechanics, and in theoretical and experimental physics. As a supplementary text, the book can be used in graduate level courses on fracture mechanics, solid matter physics, and mechanics of solids, or in a special course on the application of fracture mechanics methods in solid matter physics.

Analysis of Shells, Plates, and Beams

Analysis of Shells, Plates, and Beams PDF Author: Holm Altenbach
Publisher: Springer Nature
ISBN: 3030474917
Category : Science
Languages : en
Pages : 504

Get Book Here

Book Description
This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

University of Michigan Official Publication

University of Michigan Official Publication PDF Author: University of Michigan
Publisher: UM Libraries
ISBN:
Category : Education, Higher
Languages : en
Pages : 760

Get Book Here

Book Description
Each number is the catalogue of a specific school or college of the University.