Author: George F. Luger
Publisher: Springer Nature
ISBN: 3031574370
Category :
Languages : en
Pages : 639
Book Description
Artificial Intelligence: Principles and Practice
Author: George F. Luger
Publisher: Springer Nature
ISBN: 3031574370
Category :
Languages : en
Pages : 639
Book Description
Publisher: Springer Nature
ISBN: 3031574370
Category :
Languages : en
Pages : 639
Book Description
Principles of Artificial Intelligence
Author: Nils J. Nilsson
Publisher: Morgan Kaufmann
ISBN: 1483295869
Category : Computers
Languages : en
Pages : 493
Book Description
A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of the control strategies used. Principles of Artificial Intelligenceevolved from the author's courses and seminars at Stanford University and University of Massachusetts, Amherst, and is suitable for text use in a senior or graduate AI course, or for individual study.
Publisher: Morgan Kaufmann
ISBN: 1483295869
Category : Computers
Languages : en
Pages : 493
Book Description
A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of the control strategies used. Principles of Artificial Intelligenceevolved from the author's courses and seminars at Stanford University and University of Massachusetts, Amherst, and is suitable for text use in a senior or graduate AI course, or for individual study.
Artificial Intelligence in Surgery: Understanding the Role of AI in Surgical Practice
Author: Daniel A. Hashimoto
Publisher: McGraw Hill Professional
ISBN: 1260452743
Category : Medical
Languages : en
Pages : 432
Book Description
Build a solid foundation in surgical AI with this engaging, comprehensive guide for AI novices Machine learning, neural networks, and computer vision in surgical education, practice, and research will soon be de rigueur. Written for surgeons without a background in math or computer science, Artificial Intelligence in Surgery provides everything you need to evaluate new technologies and make the right decisions about bringing AI into your practice. Comprehensive and easy to understand, this first-of-its-kind resource illustrates the use of AI in surgery through real-life examples. It covers the issues most relevant to your practice, including: Neural Networks and Deep Learning Natural Language Processing Computer Vision Surgical Education and Simulation Preoperative Risk Stratification Intraoperative Video Analysis OR Black Box and Tracking of Intraoperative Events Artificial Intelligence and Robotic Surgery Natural Language Processing for Clinical Documentation Leveraging Artificial Intelligence in the EMR Ethical Implications of Artificial Intelligence in Surgery Artificial Intelligence and Health Policy Assessing Strengths and Weaknesses of Artificial Intelligence Research Finally, the appendix includes a detailed glossary of terms and important learning resources and techniques―all of which helps you interpret claims made by studies or companies using AI.
Publisher: McGraw Hill Professional
ISBN: 1260452743
Category : Medical
Languages : en
Pages : 432
Book Description
Build a solid foundation in surgical AI with this engaging, comprehensive guide for AI novices Machine learning, neural networks, and computer vision in surgical education, practice, and research will soon be de rigueur. Written for surgeons without a background in math or computer science, Artificial Intelligence in Surgery provides everything you need to evaluate new technologies and make the right decisions about bringing AI into your practice. Comprehensive and easy to understand, this first-of-its-kind resource illustrates the use of AI in surgery through real-life examples. It covers the issues most relevant to your practice, including: Neural Networks and Deep Learning Natural Language Processing Computer Vision Surgical Education and Simulation Preoperative Risk Stratification Intraoperative Video Analysis OR Black Box and Tracking of Intraoperative Events Artificial Intelligence and Robotic Surgery Natural Language Processing for Clinical Documentation Leveraging Artificial Intelligence in the EMR Ethical Implications of Artificial Intelligence in Surgery Artificial Intelligence and Health Policy Assessing Strengths and Weaknesses of Artificial Intelligence Research Finally, the appendix includes a detailed glossary of terms and important learning resources and techniques―all of which helps you interpret claims made by studies or companies using AI.
Artificial Intelligence and Architecture
Author: Stanislas Chaillou
Publisher: Birkhäuser
ISBN: 3035624046
Category : Architecture
Languages : de
Pages : 208
Book Description
Künstliche Intelligenz (KI) hat Eingang in unzählige Branchen gefunden. In der Architektur steckt der Einsatz von KI noch in den Kinderschuhen, doch die Entwicklung der letzten Jahre hat vielversprechende Ergebnisse gebracht. Das Buch ist eine gut verständliche Einführung. Sie bietet einen Überblick über die Geschichte der KI und ihre ersten Anwendungen in der Architektur. Im zweiten Teil präsentiert der Autor konkrete Beispiele für den kreativen Einsatz von KI in der Praxis. Führende Experten, von der Havard-University bis zur Bauhaus Universität, eröffnen schließlich in Essays vielfältige Perspektiven auf das Potenzial von KI. Als Einführung zeigt das Buch ein Panorama dieser neuen technologischen Möglichkeiten und verdeutlicht so das Versprechen, das sie für die Architektur darstellen.
Publisher: Birkhäuser
ISBN: 3035624046
Category : Architecture
Languages : de
Pages : 208
Book Description
Künstliche Intelligenz (KI) hat Eingang in unzählige Branchen gefunden. In der Architektur steckt der Einsatz von KI noch in den Kinderschuhen, doch die Entwicklung der letzten Jahre hat vielversprechende Ergebnisse gebracht. Das Buch ist eine gut verständliche Einführung. Sie bietet einen Überblick über die Geschichte der KI und ihre ersten Anwendungen in der Architektur. Im zweiten Teil präsentiert der Autor konkrete Beispiele für den kreativen Einsatz von KI in der Praxis. Führende Experten, von der Havard-University bis zur Bauhaus Universität, eröffnen schließlich in Essays vielfältige Perspektiven auf das Potenzial von KI. Als Einführung zeigt das Buch ein Panorama dieser neuen technologischen Möglichkeiten und verdeutlicht so das Versprechen, das sie für die Architektur darstellen.
Artificial Intelligence with Python
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Advanced Lectures on Machine Learning
Author: Olivier Bousquet
Publisher: Springer
ISBN: 3540286500
Category : Computers
Languages : en
Pages : 249
Book Description
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.
Publisher: Springer
ISBN: 3540286500
Category : Computers
Languages : en
Pages : 249
Book Description
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.
Artificial Intelligence and Deep Learning in Pathology
Author: Stanley Cohen
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290
Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290
Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.
Principles and Methods of Explainable Artificial Intelligence in Healthcare
Author: Albuquerque, Victor Hugo C. de
Publisher: IGI Global
ISBN: 1668437929
Category : Computers
Languages : en
Pages : 347
Book Description
Explainable artificial intelligence is proficient in operating and analyzing the unconstrainted environment in fields like robotic medicine, robotic treatment, and robotic surgery, which rely on computational vision for analyzing complex situations. Explainable artificial intelligence is a well-structured customizable technology that makes it possible to generate promising unbiased outcomes. The model’s adaptability facilitates the management of heterogeneous healthcare data and the visualization of biological structures through virtual reality. Explainable artificial intelligence has newfound applications in the healthcare industry, such as clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. Principles and Methods of Explainable Artificial Intelligence in Healthcare discusses explainable artificial intelligence and its applications in healthcare, providing a broad overview of state-of-the-art approaches for accurate analysis and diagnosis. The book also encompasses computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, and medical imaging data that assist in earlier prediction. Covering topics such as neural networks and disease detection, this reference work is ideal for industry professionals, practitioners, academicians, researchers, scholars, instructors, and students.
Publisher: IGI Global
ISBN: 1668437929
Category : Computers
Languages : en
Pages : 347
Book Description
Explainable artificial intelligence is proficient in operating and analyzing the unconstrainted environment in fields like robotic medicine, robotic treatment, and robotic surgery, which rely on computational vision for analyzing complex situations. Explainable artificial intelligence is a well-structured customizable technology that makes it possible to generate promising unbiased outcomes. The model’s adaptability facilitates the management of heterogeneous healthcare data and the visualization of biological structures through virtual reality. Explainable artificial intelligence has newfound applications in the healthcare industry, such as clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. Principles and Methods of Explainable Artificial Intelligence in Healthcare discusses explainable artificial intelligence and its applications in healthcare, providing a broad overview of state-of-the-art approaches for accurate analysis and diagnosis. The book also encompasses computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, and medical imaging data that assist in earlier prediction. Covering topics such as neural networks and disease detection, this reference work is ideal for industry professionals, practitioners, academicians, researchers, scholars, instructors, and students.
Fundamentals of the Theory of Computation
Author: Raymond Greenlaw
Publisher: Morgan Kaufmann
ISBN: 155860474X
Category : Computers
Languages : en
Pages : 356
Book Description
This innovative textbook presents the key foundational concepts for a one-semester undergraduate course in the theory of computation. It offers the most accessible and motivational course material available for undergraduate computer theory classes. Directed at undergraduates who may have difficulty understanding the relevance of the course to their future careers, the text helps make them more comfortable with the techniques required for the deeper study of computer science. The text motivates students by clarifying complex theory with many examples, exercises and detailed proofs.
Publisher: Morgan Kaufmann
ISBN: 155860474X
Category : Computers
Languages : en
Pages : 356
Book Description
This innovative textbook presents the key foundational concepts for a one-semester undergraduate course in the theory of computation. It offers the most accessible and motivational course material available for undergraduate computer theory classes. Directed at undergraduates who may have difficulty understanding the relevance of the course to their future careers, the text helps make them more comfortable with the techniques required for the deeper study of computer science. The text motivates students by clarifying complex theory with many examples, exercises and detailed proofs.
Foundations of Constraint Satisfaction
Author: Edward Tsang
Publisher: BoD – Books on Demand
ISBN: 3735723667
Category : Computers
Languages : en
Pages : 446
Book Description
This seminal text of Computer Science, the most cited book on the subject, is now available for the first time in paperback. Constraint satisfaction is a decision problem that involves finite choices. It is ubiquitous. The goal is to find values for a set of variables that will satisfy a given set of constraints. It is the core of many applications in artificial intelligence, and has found its application in many areas, such as planning and scheduling. Because of its generality, most AI researchers should be able to benefit from having good knowledge of techniques in this field. Originally published in 1993, this now classic book was the first attempt to define the scope of constraint satisfaction. It covers both the theoretical and the implementation aspects of the subject. It provides a framework for studying this field, relates different research, and resolves ambiguity in a number of concepts and algorithms in the literature. This seminal text is arguably the most rigorous book in the field. All major concepts were defined in First Order Predicate Calculus. Concepts defined this way are precise and unambiguous.
Publisher: BoD – Books on Demand
ISBN: 3735723667
Category : Computers
Languages : en
Pages : 446
Book Description
This seminal text of Computer Science, the most cited book on the subject, is now available for the first time in paperback. Constraint satisfaction is a decision problem that involves finite choices. It is ubiquitous. The goal is to find values for a set of variables that will satisfy a given set of constraints. It is the core of many applications in artificial intelligence, and has found its application in many areas, such as planning and scheduling. Because of its generality, most AI researchers should be able to benefit from having good knowledge of techniques in this field. Originally published in 1993, this now classic book was the first attempt to define the scope of constraint satisfaction. It covers both the theoretical and the implementation aspects of the subject. It provides a framework for studying this field, relates different research, and resolves ambiguity in a number of concepts and algorithms in the literature. This seminal text is arguably the most rigorous book in the field. All major concepts were defined in First Order Predicate Calculus. Concepts defined this way are precise and unambiguous.