Author: Oswald Campesato
Publisher: Mercury Learning and Information
ISBN: 1683924665
Category : Computers
Languages : en
Pages : 314
Book Description
This book begins with an introduction to AI, followed by machine learning, deep learning, NLP, and reinforcement learning. Readers will learn about machine learning classifiers such as logistic regression, k-NN, decision trees, random forests, and SVMs. Next, the book covers deep learning architectures such as CNNs, RNNs, LSTMs, and auto encoders. Keras-based code samples are included to supplement the theoretical discussion. In addition, this book contains appendices for Keras, TensorFlow 2, and Pandas. Features: Covers an introduction to programming concepts related to AI, machine learning, and deep learning Includes material on Keras, TensorFlow2 and Pandas
Artificial Intelligence, Machine Learning, and Deep Learning
Author: Oswald Campesato
Publisher: Mercury Learning and Information
ISBN: 1683924665
Category : Computers
Languages : en
Pages : 314
Book Description
This book begins with an introduction to AI, followed by machine learning, deep learning, NLP, and reinforcement learning. Readers will learn about machine learning classifiers such as logistic regression, k-NN, decision trees, random forests, and SVMs. Next, the book covers deep learning architectures such as CNNs, RNNs, LSTMs, and auto encoders. Keras-based code samples are included to supplement the theoretical discussion. In addition, this book contains appendices for Keras, TensorFlow 2, and Pandas. Features: Covers an introduction to programming concepts related to AI, machine learning, and deep learning Includes material on Keras, TensorFlow2 and Pandas
Publisher: Mercury Learning and Information
ISBN: 1683924665
Category : Computers
Languages : en
Pages : 314
Book Description
This book begins with an introduction to AI, followed by machine learning, deep learning, NLP, and reinforcement learning. Readers will learn about machine learning classifiers such as logistic regression, k-NN, decision trees, random forests, and SVMs. Next, the book covers deep learning architectures such as CNNs, RNNs, LSTMs, and auto encoders. Keras-based code samples are included to supplement the theoretical discussion. In addition, this book contains appendices for Keras, TensorFlow 2, and Pandas. Features: Covers an introduction to programming concepts related to AI, machine learning, and deep learning Includes material on Keras, TensorFlow2 and Pandas
Deep Learning Applications in Medical Imaging
Author: Saxena, Sanjay
Publisher: IGI Global
ISBN: 1799850722
Category : Medical
Languages : en
Pages : 274
Book Description
Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.
Publisher: IGI Global
ISBN: 1799850722
Category : Medical
Languages : en
Pages : 274
Book Description
Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.
Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Artificial Intelligence Driven by Machine Learning and Deep Learning
Author: Bahman Zohuri
Publisher: Nova Science Publishers
ISBN: 9781536183672
Category : Computers
Languages : en
Pages : 455
Book Description
"The future of any business from banking, e-commerce, real estate, homeland security, healthcare, marketing, the stock market, manufacturing, education, retail to government organizations depends on the data and analytics capabilities that are built and scaled. The speed of change in technology in recent years has been a real challenge for all businesses. To manage that, a significant number of organizations are exploring the BigData (BD) infrastructure that helps them to take advantage of new opportunities while saving costs. Timely transformation of information is also critical for the survivability of an organization. Having the right information at the right time will enhance not only the knowledge of stakeholders within an organization but also providing them with a tool to make the right decision at the right moment. It is no longer enough to rely on a sampling of information about the organizations' customers. The decision-makers need to get vital insights into the customers' actual behavior, which requires enormous volumes of data to be processed. We believe that Big Data infrastructure is the key to successful Artificial Intelligence (AI) deployments and accurate, unbiased real-time insights. Big data solutions have a direct impact and changing the way the organization needs to work with help from AI and its components ML and DL. In this article, we discuss these topics"--
Publisher: Nova Science Publishers
ISBN: 9781536183672
Category : Computers
Languages : en
Pages : 455
Book Description
"The future of any business from banking, e-commerce, real estate, homeland security, healthcare, marketing, the stock market, manufacturing, education, retail to government organizations depends on the data and analytics capabilities that are built and scaled. The speed of change in technology in recent years has been a real challenge for all businesses. To manage that, a significant number of organizations are exploring the BigData (BD) infrastructure that helps them to take advantage of new opportunities while saving costs. Timely transformation of information is also critical for the survivability of an organization. Having the right information at the right time will enhance not only the knowledge of stakeholders within an organization but also providing them with a tool to make the right decision at the right moment. It is no longer enough to rely on a sampling of information about the organizations' customers. The decision-makers need to get vital insights into the customers' actual behavior, which requires enormous volumes of data to be processed. We believe that Big Data infrastructure is the key to successful Artificial Intelligence (AI) deployments and accurate, unbiased real-time insights. Big data solutions have a direct impact and changing the way the organization needs to work with help from AI and its components ML and DL. In this article, we discuss these topics"--
Artificial Intelligence and Deep Learning in Pathology
Author: Stanley Cohen
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290
Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290
Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.
Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches
Author: K. Gayathri Devi
Publisher: CRC Press
ISBN: 1000179516
Category : Computers
Languages : en
Pages : 267
Book Description
Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning
Publisher: CRC Press
ISBN: 1000179516
Category : Computers
Languages : en
Pages : 267
Book Description
Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning
Machine Learning and Artificial Intelligence
Author: Ameet V Joshi
Publisher: Springer Nature
ISBN: 3030266222
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations.
Publisher: Springer Nature
ISBN: 3030266222
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations.
Learning Deep Architectures for AI
Author: Yoshua Bengio
Publisher: Now Publishers Inc
ISBN: 1601982941
Category : Computational learning theory
Languages : en
Pages : 145
Book Description
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Publisher: Now Publishers Inc
ISBN: 1601982941
Category : Computational learning theory
Languages : en
Pages : 145
Book Description
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Machine Learning and Deep Learning in Real-Time Applications
Author: Mahrishi, Mehul
Publisher: IGI Global
ISBN: 1799830977
Category : Computers
Languages : en
Pages : 344
Book Description
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Publisher: IGI Global
ISBN: 1799830977
Category : Computers
Languages : en
Pages : 344
Book Description
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
MATLAB Deep Learning
Author: Phil Kim
Publisher: Apress
ISBN: 1484228456
Category : Computers
Languages : en
Pages : 162
Book Description
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.
Publisher: Apress
ISBN: 1484228456
Category : Computers
Languages : en
Pages : 162
Book Description
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.