Artificial Intelligence in Radiation Oncology and Biomedical Physics

Artificial Intelligence in Radiation Oncology and Biomedical Physics PDF Author: Gilmer Valdes
Publisher: CRC Press
ISBN: 1000903818
Category : Computers
Languages : en
Pages : 201

Get Book Here

Book Description
This pioneering book explores how machine learning and other AI techniques impact millions of cancer patients who benefit from ionizing radiation. It features contributions from global researchers and clinicians, focusing on the clinical applications of machine learning for medical physics. AI and machine learning have attracted much recent attention and are being increasingly adopted in medicine, with many clinical components and commercial software including aspects of machine learning integration. General principles and important techniques in machine learning are introduced, followed by discussion of clinical applications, particularly in radiomics, outcome prediction, registration and segmentation, treatment planning, quality assurance, image processing, and clinical decision-making. Finally, a futuristic look at the role of AI in radiation oncology is provided. This book brings medical physicists and radiation oncologists up to date with the most novel applications of machine learning to medical physics. Practitioners will appreciate the insightful discussions and detailed descriptions in each chapter. Its emphasis on clinical applications reaches a wide audience within the medical physics profession.

Artificial Intelligence in Radiation Oncology and Biomedical Physics

Artificial Intelligence in Radiation Oncology and Biomedical Physics PDF Author: Gilmer Valdes
Publisher: CRC Press
ISBN: 1000903818
Category : Computers
Languages : en
Pages : 201

Get Book Here

Book Description
This pioneering book explores how machine learning and other AI techniques impact millions of cancer patients who benefit from ionizing radiation. It features contributions from global researchers and clinicians, focusing on the clinical applications of machine learning for medical physics. AI and machine learning have attracted much recent attention and are being increasingly adopted in medicine, with many clinical components and commercial software including aspects of machine learning integration. General principles and important techniques in machine learning are introduced, followed by discussion of clinical applications, particularly in radiomics, outcome prediction, registration and segmentation, treatment planning, quality assurance, image processing, and clinical decision-making. Finally, a futuristic look at the role of AI in radiation oncology is provided. This book brings medical physicists and radiation oncologists up to date with the most novel applications of machine learning to medical physics. Practitioners will appreciate the insightful discussions and detailed descriptions in each chapter. Its emphasis on clinical applications reaches a wide audience within the medical physics profession.

Machine Learning in Radiation Oncology

Machine Learning in Radiation Oncology PDF Author: Issam El Naqa
Publisher: Springer
ISBN: 3319183052
Category : Medical
Languages : en
Pages : 336

Get Book Here

Book Description
​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.

Artificial Intelligence in Radiation Oncology and Biomedical Physics

Artificial Intelligence in Radiation Oncology and Biomedical Physics PDF Author: Gilmer Valdes
Publisher: CRC Press
ISBN: 1000903753
Category : Computers
Languages : en
Pages : 185

Get Book Here

Book Description
This pioneering book explores how machine learning and other AI techniques impact millions of cancer patients who benefit from ionizing radiation. It features contributions from global researchers and clinicians, focusing on the clinical applications of machine learning for medical physics. AI and machine learning have attracted much recent attention and are being increasingly adopted in medicine, with many clinical components and commercial software including aspects of machine learning integration. General principles and important techniques in machine learning are introduced, followed by discussion of clinical applications, particularly in radiomics, outcome prediction, registration and segmentation, treatment planning, quality assurance, image processing, and clinical decision-making. Finally, a futuristic look at the role of AI in radiation oncology is provided. This book brings medical physicists and radiation oncologists up to date with the most novel applications of machine learning to medical physics. Practitioners will appreciate the insightful discussions and detailed descriptions in each chapter. Its emphasis on clinical applications reaches a wide audience within the medical physics profession.

The Modern Technology of Radiation Oncology

The Modern Technology of Radiation Oncology PDF Author: Jake Van Dyk
Publisher: Medical Physics Publishing Corporation
ISBN:
Category : Medical
Languages : en
Pages : 1106

Get Book Here

Book Description
Details technology associated with radiation oncology, emphasizing design of all equipment allied with radiation treatment. Describes procedures required to implement equipment in clinical service, covering needs assessment, purchase, acceptance, and commissioning, and explains quality assurance issues. Also addresses less common and evolving technologies. For medical physicists and radiation oncologists, as well as radiation therapists, dosimetrists, and engineering technologists. Includes bandw medical images and photos of equipment. Paper edition (unseen), $145.95. Annotation copyrighted by Book News, Inc., Portland, OR

Big Data in Radiation Oncology

Big Data in Radiation Oncology PDF Author: Jun Deng
Publisher: CRC Press
ISBN: 1351801120
Category : Science
Languages : en
Pages : 311

Get Book Here

Book Description
Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging PDF Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369

Get Book Here

Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Adaptive Radiation Therapy

Adaptive Radiation Therapy PDF Author: X. Allen Li
Publisher: CRC Press
ISBN: 1439816352
Category : Medical
Languages : en
Pages : 404

Get Book Here

Book Description
Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging an

Artificial Intelligence In Radiation Oncology

Artificial Intelligence In Radiation Oncology PDF Author: Seong K Mun
Publisher: World Scientific
ISBN: 9811263558
Category : Science
Languages : en
Pages : 393

Get Book Here

Book Description
The clinical use of Artificial Intelligence (AI) in radiation oncology is in its infancy. However, it is certain that AI is capable of making radiation oncology more precise and personalized with improved outcomes. Radiation oncology deploys an array of state-of-the-art technologies for imaging, treatment, planning, simulation, targeting, and quality assurance while managing the massive amount of data involving therapists, dosimetrists, physicists, nurses, technologists, and managers. AI consists of many powerful tools which can process a huge amount of inter-related data to improve accuracy, productivity, and automation in complex operations such as radiation oncology.This book offers an array of AI scientific concepts, and AI technology tools with selected examples of current applications to serve as a one-stop AI resource for the radiation oncology community. The clinical adoption, beyond research, will require ethical considerations and a framework for an overall assessment of AI as a set of powerful tools.30 renowned experts contributed to sixteen chapters organized into six sections: Define the Future, Strategy, AI Tools, AI Applications, and Assessment and Outcomes. The future is defined from a clinical and a technical perspective and the strategy discusses lessons learned from radiology experience in AI and the role of open access data to enhance the performance of AI tools. The AI tools include radiomics, segmentation, knowledge representation, and natural language processing. The AI applications discuss knowledge-based treatment planning and automation, AI-based treatment planning, prediction of radiotherapy toxicity, radiomics in cancer prognostication and treatment response, and the use of AI for mitigation of error propagation. The sixth section elucidates two critical issues in the clinical adoption: ethical issues and the evaluation of AI as a transformative technology.

Khan's The Physics of Radiation Therapy

Khan's The Physics of Radiation Therapy PDF Author: Faiz M. Khan
Publisher: Lippincott Williams & Wilkins
ISBN: 1469881268
Category : Medical
Languages : en
Pages : 584

Get Book Here

Book Description
Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and proton beam therapy, as well as the physical concepts underlying treatment planning, treatment delivery, and dosimetry. In preparing this new Fifth Edition, Dr. Kahn and new co-author Dr. John Gibbons made chapter-by-chapter revisions in the light of the latest developments in the field, adding new discussions, a new chapter, and new color illustrations throughout. Now even more precise and relevant, this edition is ideal as a reference book for practitioners, a textbook for students, and a constant companion for those preparing for their board exams. Features Stay on top of the latest advances in the field with new sections and/or discussions of Image Guided Radiation Therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and the Failure Mode Event Analysis (FMEA) approach to quality assurance. Deepen your knowledge of Stereotactic Body Radiotherapy (SBRT) through a completely new chapter that covers SBRT in greater detail. Expand your visual understanding with new full color illustrations that reflect current practice and depict new procedures. Access the authoritative information you need fast through the new companion website which features fully searchable text and an image bank for greater convenience in studying and teaching. This is the tablet version which does not include access to the supplemental content mentioned in the text.

Oxford Handbook of Ethics of AI

Oxford Handbook of Ethics of AI PDF Author: Markus D. Dubber
Publisher: Oxford University Press
ISBN: 0190067411
Category : Law
Languages : en
Pages : 1000

Get Book Here

Book Description
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."