Author: Plevris, Vagelis
Publisher: IGI Global
ISBN: 1668456443
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
In recent years, artificial intelligence (AI) has drawn significant attention with respect to its applications in several scientific fields, varying from big data handling to medical diagnosis. A tremendous transformation has taken place with the emerging application of AI. AI can provide a wide range of solutions to address many challenges in civil engineering. Artificial Intelligence and Machine Learning Techniques for Civil Engineering highlights the latest technologies and applications of AI in structural engineering, transportation engineering, geotechnical engineering, and more. It features a collection of innovative research on the methods and implementation of AI and machine learning in multiple facets of civil engineering. Covering topics such as damage inspection, safety risk management, and information modeling, this premier reference source is an essential resource for engineers, government officials, business leaders and executives, construction managers, students and faculty of higher education, librarians, researchers, and academicians.
Artificial Intelligence and Machine Learning Techniques for Civil Engineering
Author: Plevris, Vagelis
Publisher: IGI Global
ISBN: 1668456443
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
In recent years, artificial intelligence (AI) has drawn significant attention with respect to its applications in several scientific fields, varying from big data handling to medical diagnosis. A tremendous transformation has taken place with the emerging application of AI. AI can provide a wide range of solutions to address many challenges in civil engineering. Artificial Intelligence and Machine Learning Techniques for Civil Engineering highlights the latest technologies and applications of AI in structural engineering, transportation engineering, geotechnical engineering, and more. It features a collection of innovative research on the methods and implementation of AI and machine learning in multiple facets of civil engineering. Covering topics such as damage inspection, safety risk management, and information modeling, this premier reference source is an essential resource for engineers, government officials, business leaders and executives, construction managers, students and faculty of higher education, librarians, researchers, and academicians.
Publisher: IGI Global
ISBN: 1668456443
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
In recent years, artificial intelligence (AI) has drawn significant attention with respect to its applications in several scientific fields, varying from big data handling to medical diagnosis. A tremendous transformation has taken place with the emerging application of AI. AI can provide a wide range of solutions to address many challenges in civil engineering. Artificial Intelligence and Machine Learning Techniques for Civil Engineering highlights the latest technologies and applications of AI in structural engineering, transportation engineering, geotechnical engineering, and more. It features a collection of innovative research on the methods and implementation of AI and machine learning in multiple facets of civil engineering. Covering topics such as damage inspection, safety risk management, and information modeling, this premier reference source is an essential resource for engineers, government officials, business leaders and executives, construction managers, students and faculty of higher education, librarians, researchers, and academicians.
A Primer on Machine Learning Applications in Civil Engineering
Author: Paresh Chandra Deka
Publisher: CRC Press
ISBN: 0429836651
Category : Computers
Languages : en
Pages : 211
Book Description
Machine learning has undergone rapid growth in diversification and practicality, and the repertoire of techniques has evolved and expanded. The aim of this book is to provide a broad overview of the available machine-learning techniques that can be utilized for solving civil engineering problems. The fundamentals of both theoretical and practical aspects are discussed in the domains of water resources/hydrological modeling, geotechnical engineering, construction engineering and management, and coastal/marine engineering. Complex civil engineering problems such as drought forecasting, river flow forecasting, modeling evaporation, estimation of dew point temperature, modeling compressive strength of concrete, ground water level forecasting, and significant wave height forecasting are also included. Features Exclusive information on machine learning and data analytics applications with respect to civil engineering Includes many machine learning techniques in numerous civil engineering disciplines Provides ideas on how and where to apply machine learning techniques for problem solving Covers water resources and hydrological modeling, geotechnical engineering, construction engineering and management, coastal and marine engineering, and geographical information systems Includes MATLAB® exercises
Publisher: CRC Press
ISBN: 0429836651
Category : Computers
Languages : en
Pages : 211
Book Description
Machine learning has undergone rapid growth in diversification and practicality, and the repertoire of techniques has evolved and expanded. The aim of this book is to provide a broad overview of the available machine-learning techniques that can be utilized for solving civil engineering problems. The fundamentals of both theoretical and practical aspects are discussed in the domains of water resources/hydrological modeling, geotechnical engineering, construction engineering and management, and coastal/marine engineering. Complex civil engineering problems such as drought forecasting, river flow forecasting, modeling evaporation, estimation of dew point temperature, modeling compressive strength of concrete, ground water level forecasting, and significant wave height forecasting are also included. Features Exclusive information on machine learning and data analytics applications with respect to civil engineering Includes many machine learning techniques in numerous civil engineering disciplines Provides ideas on how and where to apply machine learning techniques for problem solving Covers water resources and hydrological modeling, geotechnical engineering, construction engineering and management, coastal and marine engineering, and geographical information systems Includes MATLAB® exercises
Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering
Author: Gebrail Bekdas
Publisher: Engineering Science Reference
ISBN: 9781799803027
Category : Artificial intelligence
Languages : en
Pages : 312
Book Description
"This book examines the application of artificial intelligence and machine learning civil, mechanical, and industrial engineering"--
Publisher: Engineering Science Reference
ISBN: 9781799803027
Category : Artificial intelligence
Languages : en
Pages : 312
Book Description
"This book examines the application of artificial intelligence and machine learning civil, mechanical, and industrial engineering"--
Probabilistic Machine Learning for Civil Engineers
Author: James-A. Goulet
Publisher: MIT Press
ISBN: 0262538709
Category : Computers
Languages : en
Pages : 298
Book Description
An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws. The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.
Publisher: MIT Press
ISBN: 0262538709
Category : Computers
Languages : en
Pages : 298
Book Description
An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws. The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.
Artificial Intelligence in Construction Engineering and Management
Author: Limao Zhang
Publisher: Springer Nature
ISBN: 9811628424
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
This book highlights the latest technologies and applications of Artificial Intelligence (AI) in the domain of construction engineering and management. The construction industry worldwide has been a late bloomer to adopting digital technology, where construction projects are predominantly managed with a heavy reliance on the knowledge and experience of construction professionals. AI works by combining large amounts of data with fast, iterative processing, and intelligent algorithms (e.g., neural networks, process mining, and deep learning), allowing the computer to learn automatically from patterns or features in the data. It provides a wide range of solutions to address many challenging construction problems, such as knowledge discovery, risk estimates, root cause analysis, damage assessment and prediction, and defect detection. A tremendous transformation has taken place in the past years with the emerging applications of AI. This enables industrial participants to operate projects more efficiently and safely, not only increasing the automation and productivity in construction but also enhancing the competitiveness globally.
Publisher: Springer Nature
ISBN: 9811628424
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
This book highlights the latest technologies and applications of Artificial Intelligence (AI) in the domain of construction engineering and management. The construction industry worldwide has been a late bloomer to adopting digital technology, where construction projects are predominantly managed with a heavy reliance on the knowledge and experience of construction professionals. AI works by combining large amounts of data with fast, iterative processing, and intelligent algorithms (e.g., neural networks, process mining, and deep learning), allowing the computer to learn automatically from patterns or features in the data. It provides a wide range of solutions to address many challenging construction problems, such as knowledge discovery, risk estimates, root cause analysis, damage assessment and prediction, and defect detection. A tremendous transformation has taken place in the past years with the emerging applications of AI. This enables industrial participants to operate projects more efficiently and safely, not only increasing the automation and productivity in construction but also enhancing the competitiveness globally.
Artificial Intelligence in Structural Engineering
Author: Ian Smith
Publisher: Springer Science & Business Media
ISBN: 9783540648062
Category : Computers
Languages : en
Pages : 518
Book Description
This book presents the state of the art of artificial intelligence techniques applied to structural engineering. The 28 revised full papers by leading scientists were solicited for presentation at a meeting held in Ascona, Switzerland, in July 1998. The recent advances in information technology, in particular decreasing hardware cost, Internet communication, faster computation, increased bandwidth, etc., allow for the application of new AI techniques to structural engineering. The papers presented deal with new aspects of information technology support for the design, analysis, monitoring, control and diagnosis of various structural engineering systems.
Publisher: Springer Science & Business Media
ISBN: 9783540648062
Category : Computers
Languages : en
Pages : 518
Book Description
This book presents the state of the art of artificial intelligence techniques applied to structural engineering. The 28 revised full papers by leading scientists were solicited for presentation at a meeting held in Ascona, Switzerland, in July 1998. The recent advances in information technology, in particular decreasing hardware cost, Internet communication, faster computation, increased bandwidth, etc., allow for the application of new AI techniques to structural engineering. The papers presented deal with new aspects of information technology support for the design, analysis, monitoring, control and diagnosis of various structural engineering systems.
Harmony Search Algorithm
Author: Joong Hoon Kim
Publisher: Springer
ISBN: 3662479265
Category : Computers
Languages : en
Pages : 456
Book Description
The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community. This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications. The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques. This book offers a valuable snapshot of the current status of the Harmony Search Algorithm and related techniques, and will be a useful reference for practising researchers and advanced students in computer science and engineering.
Publisher: Springer
ISBN: 3662479265
Category : Computers
Languages : en
Pages : 456
Book Description
The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community. This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications. The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques. This book offers a valuable snapshot of the current status of the Harmony Search Algorithm and related techniques, and will be a useful reference for practising researchers and advanced students in computer science and engineering.
Applications of Artificial Intelligence Techniques in the Petroleum Industry
Author: Abdolhossein Hemmati-Sarapardeh
Publisher: Gulf Professional Publishing
ISBN: 0128223855
Category : Science
Languages : en
Pages : 324
Book Description
Applications of Artificial Intelligence Techniques in the Petroleum Industry gives engineers a critical resource to help them understand the machine learning that will solve specific engineering challenges. The reference begins with fundamentals, covering preprocessing of data, types of intelligent models, and training and optimization algorithms. The book moves on to methodically address artificial intelligence technology and applications by the upstream sector, covering exploration, drilling, reservoir and production engineering. Final sections cover current gaps and future challenges. - Teaches how to apply machine learning algorithms that work best in exploration, drilling, reservoir or production engineering - Helps readers increase their existing knowledge on intelligent data modeling, machine learning and artificial intelligence, with foundational chapters covering the preprocessing of data and training on algorithms - Provides tactics on how to cover complex projects such as shale gas, tight oils, and other types of unconventional reservoirs with more advanced model input
Publisher: Gulf Professional Publishing
ISBN: 0128223855
Category : Science
Languages : en
Pages : 324
Book Description
Applications of Artificial Intelligence Techniques in the Petroleum Industry gives engineers a critical resource to help them understand the machine learning that will solve specific engineering challenges. The reference begins with fundamentals, covering preprocessing of data, types of intelligent models, and training and optimization algorithms. The book moves on to methodically address artificial intelligence technology and applications by the upstream sector, covering exploration, drilling, reservoir and production engineering. Final sections cover current gaps and future challenges. - Teaches how to apply machine learning algorithms that work best in exploration, drilling, reservoir or production engineering - Helps readers increase their existing knowledge on intelligent data modeling, machine learning and artificial intelligence, with foundational chapters covering the preprocessing of data and training on algorithms - Provides tactics on how to cover complex projects such as shale gas, tight oils, and other types of unconventional reservoirs with more advanced model input
Vibration-based Techniques For Damage Detection And Localization In Engineering Structures
Author: Ali Salehzadeh Nobari
Publisher: World Scientific
ISBN: 178634498X
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
In the oil and gas industries, large companies are endeavoring to find and utilize efficient structural health monitoring methods in order to reduce maintenance costs and time. Through an examination of the vibration-based techniques, this title addresses theoretical, computational and experimental methods used within this trend.By providing comprehensive and up-to-date coverage of established and emerging processes, this book enables the reader to draw their own conclusions about the field of vibration-controlled damage detection in comparison with other available techniques. The chapters offer a balance between laboratory and practical applications, in addition to detailed case studies, strengths and weakness are drawn from a broad spectrum of information.
Publisher: World Scientific
ISBN: 178634498X
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
In the oil and gas industries, large companies are endeavoring to find and utilize efficient structural health monitoring methods in order to reduce maintenance costs and time. Through an examination of the vibration-based techniques, this title addresses theoretical, computational and experimental methods used within this trend.By providing comprehensive and up-to-date coverage of established and emerging processes, this book enables the reader to draw their own conclusions about the field of vibration-controlled damage detection in comparison with other available techniques. The chapters offer a balance between laboratory and practical applications, in addition to detailed case studies, strengths and weakness are drawn from a broad spectrum of information.
Machine Learning for Engineers
Author: Ryan G. McClarren
Publisher: Springer Nature
ISBN: 3030703886
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.
Publisher: Springer Nature
ISBN: 3030703886
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.