Author: Stanley Cohen
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290
Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.
Artificial Intelligence and Deep Learning in Pathology
Author: Stanley Cohen
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290
Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290
Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.
Artificial Intelligence and Machine Learning for Digital Pathology
Author: Andreas Holzinger
Publisher: Springer Nature
ISBN: 3030504026
Category : Computers
Languages : en
Pages : 351
Book Description
Data driven Artificial Intelligence (AI) and Machine Learning (ML) in digital pathology, radiology, and dermatology is very promising. In specific cases, for example, Deep Learning (DL), even exceeding human performance. However, in the context of medicine it is important for a human expert to verify the outcome. Consequently, there is a need for transparency and re-traceability of state-of-the-art solutions to make them usable for ethical responsible medical decision support. Moreover, big data is required for training, covering a wide spectrum of a variety of human diseases in different organ systems. These data sets must meet top-quality and regulatory criteria and must be well annotated for ML at patient-, sample-, and image-level. Here biobanks play a central and future role in providing large collections of high-quality, well-annotated samples and data. The main challenges are finding biobanks containing ‘‘fit-for-purpose’’ samples, providing quality related meta-data, gaining access to standardized medical data and annotations, and mass scanning of whole slides including efficient data management solutions.
Publisher: Springer Nature
ISBN: 3030504026
Category : Computers
Languages : en
Pages : 351
Book Description
Data driven Artificial Intelligence (AI) and Machine Learning (ML) in digital pathology, radiology, and dermatology is very promising. In specific cases, for example, Deep Learning (DL), even exceeding human performance. However, in the context of medicine it is important for a human expert to verify the outcome. Consequently, there is a need for transparency and re-traceability of state-of-the-art solutions to make them usable for ethical responsible medical decision support. Moreover, big data is required for training, covering a wide spectrum of a variety of human diseases in different organ systems. These data sets must meet top-quality and regulatory criteria and must be well annotated for ML at patient-, sample-, and image-level. Here biobanks play a central and future role in providing large collections of high-quality, well-annotated samples and data. The main challenges are finding biobanks containing ‘‘fit-for-purpose’’ samples, providing quality related meta-data, gaining access to standardized medical data and annotations, and mass scanning of whole slides including efficient data management solutions.
Digital Pathology
Author: Liron Pantanowitz
Publisher:
ISBN: 9780891896104
Category : Medical informatics
Languages : en
Pages : 304
Book Description
The definitive, complete reference of digital pathology! An extraordinarily comprehensive and complete book for individuals with anything from minimal knowledge to deep, accomplished experience in digital pathology. Easy to read and plainly written, Digital Pathology examines the history and technological evolution of digital pathology, from the birth of scanning technology and telepathology to three-dimensional imaging on large multi-touch displays and computer aided diagnosis. A must-have book for anyone wishing to learn more about and work in this exciting and critical information environment including pathologists, laboratory professionals, students and any other medical practitioners with a particular interest in the history and future of digital pathology. It can also be a useful reference for anyone, medical or non-medical, who have an interest in learning more about the field. Digital pathology is truly a game changer, and this book is a crucial tool for anyone wishing to know more. Subjects discussed in depth include: Static digital imaging; basics and clinical use. Digital imaging processes. Telepathology. While slide imaging. Clinical applications of whole slide imaging. Digital pathology for educational, quality improvement, research and other settings. Forensic digital imaging.
Publisher:
ISBN: 9780891896104
Category : Medical informatics
Languages : en
Pages : 304
Book Description
The definitive, complete reference of digital pathology! An extraordinarily comprehensive and complete book for individuals with anything from minimal knowledge to deep, accomplished experience in digital pathology. Easy to read and plainly written, Digital Pathology examines the history and technological evolution of digital pathology, from the birth of scanning technology and telepathology to three-dimensional imaging on large multi-touch displays and computer aided diagnosis. A must-have book for anyone wishing to learn more about and work in this exciting and critical information environment including pathologists, laboratory professionals, students and any other medical practitioners with a particular interest in the history and future of digital pathology. It can also be a useful reference for anyone, medical or non-medical, who have an interest in learning more about the field. Digital pathology is truly a game changer, and this book is a crucial tool for anyone wishing to know more. Subjects discussed in depth include: Static digital imaging; basics and clinical use. Digital imaging processes. Telepathology. While slide imaging. Clinical applications of whole slide imaging. Digital pathology for educational, quality improvement, research and other settings. Forensic digital imaging.
Artificial Intelligence in Medical Imaging
Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369
Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369
Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Whole Slide Imaging
Author: Anil V. Parwani
Publisher: Springer Nature
ISBN: 3030833321
Category : Medical
Languages : en
Pages : 253
Book Description
This book provides up-to-date and practical knowledge in all aspects of whole slide imaging (WSI) by experts in the field. This includes a historical perspective on the evolution of this technology, technical aspects of making a great whole slide image, the various applications of whole slide imaging and future applications using WSI for computer-aided diagnosis The goal is to provide practical knowledge and address knowledge gaps in this emerging field. This book is unique because it addresses an emerging area in pathology for which currently there is only limited information about the practical aspects of deploying this technology. For example, there are no established selection criteria for choosing new scanners and a knowledge base with the key information. The authors of the various chapters have years of real-world experience in selecting and implementing WSI solutions in various aspects of pathology practice. This text also discusses practical tips and pearls to address the selection of a WSI vendor, technology details, implementing this technology and provide an overview of its everyday uses in all areas of pathology. Chapters include important information on how to integrate digital slides with laboratory information system and how to streamline the “digital workflow” with the intent of saving time, saving money, reducing errors, improving efficiency and accuracy, and ultimately benefiting patient outcomes. Whole Slide Imaging: Current Applications and Future Directions is designed to present a comprehensive and state-of the-art approach to WSI within the broad area of digital pathology. It aims to give the readers a look at WSI with a deeper lens and also envision the future of pathology imaging as it pertains to WSI and associated digital innovations.
Publisher: Springer Nature
ISBN: 3030833321
Category : Medical
Languages : en
Pages : 253
Book Description
This book provides up-to-date and practical knowledge in all aspects of whole slide imaging (WSI) by experts in the field. This includes a historical perspective on the evolution of this technology, technical aspects of making a great whole slide image, the various applications of whole slide imaging and future applications using WSI for computer-aided diagnosis The goal is to provide practical knowledge and address knowledge gaps in this emerging field. This book is unique because it addresses an emerging area in pathology for which currently there is only limited information about the practical aspects of deploying this technology. For example, there are no established selection criteria for choosing new scanners and a knowledge base with the key information. The authors of the various chapters have years of real-world experience in selecting and implementing WSI solutions in various aspects of pathology practice. This text also discusses practical tips and pearls to address the selection of a WSI vendor, technology details, implementing this technology and provide an overview of its everyday uses in all areas of pathology. Chapters include important information on how to integrate digital slides with laboratory information system and how to streamline the “digital workflow” with the intent of saving time, saving money, reducing errors, improving efficiency and accuracy, and ultimately benefiting patient outcomes. Whole Slide Imaging: Current Applications and Future Directions is designed to present a comprehensive and state-of the-art approach to WSI within the broad area of digital pathology. It aims to give the readers a look at WSI with a deeper lens and also envision the future of pathology imaging as it pertains to WSI and associated digital innovations.
Histology for Pathologists
Author: Stacey E. Mills
Publisher: Lippincott Williams & Wilkins
ISBN: 1451177801
Category : Medical
Languages : en
Pages : 3002
Book Description
A strong grounding in basic histology is essential for all pathologists. However, there had always been a gap between histology and pathology in which histologic information specifically for the pathologist was often lacking. Histology for Pathologists deals with the microscopic features of normal human tissues, from the perspective of the surgical pathologist. This is the only text that uses human (vs. animal) tissues for the histology. It is the best reference in the literature for information on normal histology, and, as such, is essential for all clinical pathologists. Written by pathologists for pathologists, the new edition updates the pathologist's understanding of normal histology up to date with the incremental advances made in the last five years. The 3rd edition has become a "classic" purchased by virtually all residents beginning their pathology training, as well as pathologists in practice. The 4th edition builds on that substantial foundation. The table of contents remains essentially the same with the exception of some changes in authorship.
Publisher: Lippincott Williams & Wilkins
ISBN: 1451177801
Category : Medical
Languages : en
Pages : 3002
Book Description
A strong grounding in basic histology is essential for all pathologists. However, there had always been a gap between histology and pathology in which histologic information specifically for the pathologist was often lacking. Histology for Pathologists deals with the microscopic features of normal human tissues, from the perspective of the surgical pathologist. This is the only text that uses human (vs. animal) tissues for the histology. It is the best reference in the literature for information on normal histology, and, as such, is essential for all clinical pathologists. Written by pathologists for pathologists, the new edition updates the pathologist's understanding of normal histology up to date with the incremental advances made in the last five years. The 3rd edition has become a "classic" purchased by virtually all residents beginning their pathology training, as well as pathologists in practice. The 4th edition builds on that substantial foundation. The table of contents remains essentially the same with the exception of some changes in authorship.
Deep Medicine
Author: Eric Topol
Publisher: Basic Books
ISBN: 1541644646
Category : Health & Fitness
Languages : en
Pages : 388
Book Description
A Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.
Publisher: Basic Books
ISBN: 1541644646
Category : Health & Fitness
Languages : en
Pages : 388
Book Description
A Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.
Machine Learning in Medical Imaging
Author: Chunfeng Lian
Publisher: Springer Nature
ISBN: 303087589X
Category : Computers
Languages : en
Pages : 723
Book Description
This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. *The workshop was held virtually.
Publisher: Springer Nature
ISBN: 303087589X
Category : Computers
Languages : en
Pages : 723
Book Description
This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. *The workshop was held virtually.
Bioinformatics Methods in Clinical Research
Author: Rune Matthiesen
Publisher: Humana
ISBN:
Category : Computers
Languages : en
Pages : 408
Book Description
Covering the latest developments in clinical omics, this volume details the algorithms currently used in publicly available software tools. It looks at statistics, algorithms, automated data retrieval, and experimental consideration in the various omics areas.
Publisher: Humana
ISBN:
Category : Computers
Languages : en
Pages : 408
Book Description
Covering the latest developments in clinical omics, this volume details the algorithms currently used in publicly available software tools. It looks at statistics, algorithms, automated data retrieval, and experimental consideration in the various omics areas.
Deep Learning in Medical Image Analysis
Author: Zhengchao Dong
Publisher:
ISBN: 9783036514703
Category :
Languages : en
Pages : 458
Book Description
The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis.
Publisher:
ISBN: 9783036514703
Category :
Languages : en
Pages : 458
Book Description
The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis.