Artificial Intelligence and Deep Learning in Pathology

Artificial Intelligence and Deep Learning in Pathology PDF Author: Stanley Cohen
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290

Get Book Here

Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.

Artificial Intelligence and Deep Learning in Pathology

Artificial Intelligence and Deep Learning in Pathology PDF Author: Stanley Cohen
Publisher: Elsevier Health Sciences
ISBN: 0323675379
Category : Medical
Languages : en
Pages : 290

Get Book Here

Book Description
Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.

Artificial Intelligence and Machine Learning for Digital Pathology

Artificial Intelligence and Machine Learning for Digital Pathology PDF Author: Andreas Holzinger
Publisher: Springer Nature
ISBN: 3030504026
Category : Computers
Languages : en
Pages : 351

Get Book Here

Book Description
Data driven Artificial Intelligence (AI) and Machine Learning (ML) in digital pathology, radiology, and dermatology is very promising. In specific cases, for example, Deep Learning (DL), even exceeding human performance. However, in the context of medicine it is important for a human expert to verify the outcome. Consequently, there is a need for transparency and re-traceability of state-of-the-art solutions to make them usable for ethical responsible medical decision support. Moreover, big data is required for training, covering a wide spectrum of a variety of human diseases in different organ systems. These data sets must meet top-quality and regulatory criteria and must be well annotated for ML at patient-, sample-, and image-level. Here biobanks play a central and future role in providing large collections of high-quality, well-annotated samples and data. The main challenges are finding biobanks containing ‘‘fit-for-purpose’’ samples, providing quality related meta-data, gaining access to standardized medical data and annotations, and mass scanning of whole slides including efficient data management solutions.

Digital Pathology

Digital Pathology PDF Author: Liron Pantanowitz
Publisher:
ISBN: 9780891896104
Category : Medical informatics
Languages : en
Pages : 304

Get Book Here

Book Description
The definitive, complete reference of digital pathology! An extraordinarily comprehensive and complete book for individuals with anything from minimal knowledge to deep, accomplished experience in digital pathology. Easy to read and plainly written, Digital Pathology examines the history and technological evolution of digital pathology, from the birth of scanning technology and telepathology to three-dimensional imaging on large multi-touch displays and computer aided diagnosis. A must-have book for anyone wishing to learn more about and work in this exciting and critical information environment including pathologists, laboratory professionals, students and any other medical practitioners with a particular interest in the history and future of digital pathology. It can also be a useful reference for anyone, medical or non-medical, who have an interest in learning more about the field. Digital pathology is truly a game changer, and this book is a crucial tool for anyone wishing to know more. Subjects discussed in depth include: Static digital imaging; basics and clinical use. Digital imaging processes. Telepathology. While slide imaging. Clinical applications of whole slide imaging. Digital pathology for educational, quality improvement, research and other settings. Forensic digital imaging.

Medical Imaging

Medical Imaging PDF Author: K.C. Santosh
Publisher: CRC Press
ISBN: 0429642490
Category : Computers
Languages : en
Pages : 251

Get Book Here

Book Description
Winner of the "Outstanding Academic Title" recognition by Choice for the 2020 OAT Awards. The Choice OAT Award represents the highest caliber of scholarly titles that have been reviewed by Choice and conveys the extraordinary recognition of the academic community. The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.

Histology for Pathologists

Histology for Pathologists PDF Author: Stacey E. Mills
Publisher: Lippincott Williams & Wilkins
ISBN: 1451177801
Category : Medical
Languages : en
Pages : 3002

Get Book Here

Book Description
A strong grounding in basic histology is essential for all pathologists. However, there had always been a gap between histology and pathology in which histologic information specifically for the pathologist was often lacking. Histology for Pathologists deals with the microscopic features of normal human tissues, from the perspective of the surgical pathologist. This is the only text that uses human (vs. animal) tissues for the histology. It is the best reference in the literature for information on normal histology, and, as such, is essential for all clinical pathologists. Written by pathologists for pathologists, the new edition updates the pathologist's understanding of normal histology up to date with the incremental advances made in the last five years. The 3rd edition has become a "classic" purchased by virtually all residents beginning their pathology training, as well as pathologists in practice. The 4th edition builds on that substantial foundation. The table of contents remains essentially the same with the exception of some changes in authorship.

Deep Medicine

Deep Medicine PDF Author: Eric Topol
Publisher: Basic Books
ISBN: 1541644646
Category : Health & Fitness
Languages : en
Pages : 388

Get Book Here

Book Description
A Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.

Whole Slide Imaging

Whole Slide Imaging PDF Author: Anil V. Parwani
Publisher: Springer Nature
ISBN: 3030833321
Category : Medical
Languages : en
Pages : 253

Get Book Here

Book Description
This book provides up-to-date and practical knowledge in all aspects of whole slide imaging (WSI) by experts in the field. This includes a historical perspective on the evolution of this technology, technical aspects of making a great whole slide image, the various applications of whole slide imaging and future applications using WSI for computer-aided diagnosis The goal is to provide practical knowledge and address knowledge gaps in this emerging field. This book is unique because it addresses an emerging area in pathology for which currently there is only limited information about the practical aspects of deploying this technology. For example, there are no established selection criteria for choosing new scanners and a knowledge base with the key information. The authors of the various chapters have years of real-world experience in selecting and implementing WSI solutions in various aspects of pathology practice. This text also discusses practical tips and pearls to address the selection of a WSI vendor, technology details, implementing this technology and provide an overview of its everyday uses in all areas of pathology. Chapters include important information on how to integrate digital slides with laboratory information system and how to streamline the “digital workflow” with the intent of saving time, saving money, reducing errors, improving efficiency and accuracy, and ultimately benefiting patient outcomes. Whole Slide Imaging: Current Applications and Future Directions is designed to present a comprehensive and state-of the-art approach to WSI within the broad area of digital pathology. It aims to give the readers a look at WSI with a deeper lens and also envision the future of pathology imaging as it pertains to WSI and associated digital innovations.

Machine Learning in Medical Imaging

Machine Learning in Medical Imaging PDF Author: Chunfeng Lian
Publisher: Springer Nature
ISBN: 303087589X
Category : Computers
Languages : en
Pages : 723

Get Book Here

Book Description
This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. *The workshop was held virtually.

Bioinformatics Methods in Clinical Research

Bioinformatics Methods in Clinical Research PDF Author: Rune Matthiesen
Publisher: Humana Press
ISBN: 9781617796708
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Integrated bioinformatics solutions have become increasingly valuable in past years, as technological advances have allowed researchers to consider the potential of omics for clinical diagnosis, prognosis, and therapeutic purposes, and as the costs of such techniques have begun to lessen. In Bioinformatics Methods in Clinical Research, experts examine the latest developments impacting clinical omics, and describe in great detail the algorithms that are currently used in publicly available software tools. Chapters discuss statistics, algorithms, automated methods of data retrieval, and experimental consideration in genomics, transcriptomics, proteomics, and metabolomics. Composed in the highly successful Methods in Molecular BiologyTM series format, each chapter contains a brief introduction, provides practical examples illustrating methods, results, and conclusions from data mining strategies wherever possible, and includes a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Informative and ground-breaking, Bioinformatics Methods in Clinical Research establishes a much-needed bridge between theory and practice, making it an indispensable resource for bioinformatics researchers.

Deep Learning in Healthcare

Deep Learning in Healthcare PDF Author: Yen-Wei Chen
Publisher: Springer Nature
ISBN: 3030326063
Category : Technology & Engineering
Languages : en
Pages : 225

Get Book Here

Book Description
This book provides a comprehensive overview of deep learning (DL) in medical and healthcare applications, including the fundamentals and current advances in medical image analysis, state-of-the-art DL methods for medical image analysis and real-world, deep learning-based clinical computer-aided diagnosis systems. Deep learning (DL) is one of the key techniques of artificial intelligence (AI) and today plays an important role in numerous academic and industrial areas. DL involves using a neural network with many layers (deep structure) between input and output, and its main advantage of is that it can automatically learn data-driven, highly representative and hierarchical features and perform feature extraction and classification on one network. DL can be used to model or simulate an intelligent system or process using annotated training data. Recently, DL has become widely used in medical applications, such as anatomic modelling, tumour detection, disease classification, computer-aided diagnosis and surgical planning. This book is intended for computer science and engineering students and researchers, medical professionals and anyone interested using DL techniques.