Author: Yousef Farhaoui
Publisher: Springer Nature
ISBN: 3031484657
Category :
Languages : en
Pages : 590
Book Description
Artificial Intelligence, Data Science and Applications
Author: Yousef Farhaoui
Publisher: Springer Nature
ISBN: 3031484657
Category :
Languages : en
Pages : 590
Book Description
Publisher: Springer Nature
ISBN: 3031484657
Category :
Languages : en
Pages : 590
Book Description
Modern Artificial Intelligence and Data Science
Author: Abdellah Idrissi
Publisher: Springer Nature
ISBN: 3031333098
Category : Computers
Languages : en
Pages : 321
Book Description
This Book, through its various chapters presenting the Recent Advances in Modern Artificial Intelligence and Data Science as well as their Applications, aims to set up lasting and real applications necessary for both academics and professionals. Readers find here the fruit of many research ideas covering a wide range of application areas that can be explored for the advancement of their research or the development of their business. These ideas present new techniques and trends projected in various areas of daily life. Through its proposals of new ideas, this Book serves as a real guide both for experienced readers and for beginners in these specialized fields. It also covers several applications that explain how they can support some societal challenges such as education, health, agriculture, clean energy, business, environment, security and many more. This Book is therefore intended for Designers, Developers, Decision-Makers, Consultants, Engineers, and of course Master's/Doctoral Students, Researchers and Academics.
Publisher: Springer Nature
ISBN: 3031333098
Category : Computers
Languages : en
Pages : 321
Book Description
This Book, through its various chapters presenting the Recent Advances in Modern Artificial Intelligence and Data Science as well as their Applications, aims to set up lasting and real applications necessary for both academics and professionals. Readers find here the fruit of many research ideas covering a wide range of application areas that can be explored for the advancement of their research or the development of their business. These ideas present new techniques and trends projected in various areas of daily life. Through its proposals of new ideas, this Book serves as a real guide both for experienced readers and for beginners in these specialized fields. It also covers several applications that explain how they can support some societal challenges such as education, health, agriculture, clean energy, business, environment, security and many more. This Book is therefore intended for Designers, Developers, Decision-Makers, Consultants, Engineers, and of course Master's/Doctoral Students, Researchers and Academics.
The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry
Author: Stephanie K. Ashenden
Publisher: Academic Press
ISBN: 0128204494
Category : Computers
Languages : en
Pages : 266
Book Description
The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide
Publisher: Academic Press
ISBN: 0128204494
Category : Computers
Languages : en
Pages : 266
Book Description
The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide
Machine Learning and Data Science
Author: Prateek Agrawal
Publisher: John Wiley & Sons
ISBN: 1119775612
Category : Computers
Languages : en
Pages : 276
Book Description
MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.
Publisher: John Wiley & Sons
ISBN: 1119775612
Category : Computers
Languages : en
Pages : 276
Book Description
MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.
Data Science with R Programming Basics
Author: Dr.Sudhakar.K
Publisher: SK Research Group of Companies
ISBN: 9364922794
Category : Computers
Languages : en
Pages : 226
Book Description
Dr.Sudhakar.K, Associate Professor, Department of Artificial Intelligence & Data Science, NITTE Meenakshi Institute of Technology, Bangalore, Karnataka, India. Mrs.Geethanjali.S.G, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India. Mrs.Rashmi.D.M, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India. Mrs.Sinchana K.P, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India.
Publisher: SK Research Group of Companies
ISBN: 9364922794
Category : Computers
Languages : en
Pages : 226
Book Description
Dr.Sudhakar.K, Associate Professor, Department of Artificial Intelligence & Data Science, NITTE Meenakshi Institute of Technology, Bangalore, Karnataka, India. Mrs.Geethanjali.S.G, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India. Mrs.Rashmi.D.M, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India. Mrs.Sinchana K.P, Assistant Professor, Department of Computer Science & Engineering, DON BOSCO Institute of Technology, Bangalore, Karnataka, India.
Artificial Intelligence, Big Data, IOT and Block Chain in Healthcare: From Concepts to Applications
Author: Yousef Farhaoui
Publisher: Springer Nature
ISBN: 3031650182
Category :
Languages : en
Pages : 581
Book Description
Publisher: Springer Nature
ISBN: 3031650182
Category :
Languages : en
Pages : 581
Book Description
Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches
Author: K. Gayathri Devi
Publisher: CRC Press
ISBN: 1000179516
Category : Computers
Languages : en
Pages : 267
Book Description
Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning
Publisher: CRC Press
ISBN: 1000179516
Category : Computers
Languages : en
Pages : 267
Book Description
Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts and techniques used to run tasks in an automated manner. It discusses computational intelligence in the detection and diagnosis of clinical and biomedical images, covers the automation of a system through machine learning and deep learning approaches, presents data analytics and mining for decision-support applications, and includes case-based reasoning, natural language processing, computer vision, and AI approaches in real-time applications. Academic scientists, researchers, and students in the various domains of computer science engineering, electronics and communication engineering, and information technology, as well as industrial engineers, biomedical engineers, and management, will find this book useful. By the end of this book, you will understand the fundamentals of AI. Various case studies will develop your adaptive thinking to solve real-time AI problems. Features Includes AI-based decision-making approaches Discusses computational intelligence in the detection and diagnosis of clinical and biomedical images Covers automation of systems through machine learning and deep learning approaches and its implications to the real world Presents data analytics and mining for decision-support applications Offers case-based reasoning
Advances in Smart Medical, IoT & Artificial Intelligence
Author: Mohammed Serrhini
Publisher: Springer Nature
ISBN: 3031668502
Category :
Languages : en
Pages : 340
Book Description
Publisher: Springer Nature
ISBN: 3031668502
Category :
Languages : en
Pages : 340
Book Description
Machine Learning Approach for Cloud Data Analytics in IoT
Author: Sachi Nandan Mohanty
Publisher: John Wiley & Sons
ISBN: 1119785855
Category : Computers
Languages : en
Pages : 530
Book Description
Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
Publisher: John Wiley & Sons
ISBN: 1119785855
Category : Computers
Languages : en
Pages : 530
Book Description
Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
Artificial Intelligence And Data Analytics
Author: Dr. A. Vijayalakshmi
Publisher: Academic Guru Publishing House
ISBN: 8119843711
Category : Study Aids
Languages : en
Pages : 250
Book Description
"Artificial Intelligence and Data Analytics" is an essential manual that clarifies the intricate yet enthralling domains of AI and Data Analytics, providing readers with an all-encompassing examination of the revolutionary potential that these technologies possess in the present-day environment. An indispensable resource for professionals, academicians, and enthusiasts desiring a profound comprehension of the interrelationships among artificial intelligence and data analytics, this book has been painstakingly crafted. The book commences with a meticulously organized structure that establishes a strong groundwork, exploring the fundamental principles of data analytics, machine learning, and artificial intelligence. The narrative proceeds with case studies and real-world applications that shed light on the pragmatic ramifications of these technologies in various sectors, including healthcare, finance, and e-commerce. This book is distinguished by its nuanced treatment of ethical considerations, which addresses the conscientious and responsible application of artificial intelligence and data-driven insights. By delving into sophisticated algorithms and addressing the complexities of big data, the book provides readers with a comprehensive understanding of these ever-evolving domains through the application of both theoretical and practical expertise. Irrespective of one's level of expertise, "Artificial Intelligence and Data Analytics" provides an engaging exploration of the latest advancements and prospective prospects, assisting individuals in maximizing the capabilities of AI and Data Analytics within their specific fields.
Publisher: Academic Guru Publishing House
ISBN: 8119843711
Category : Study Aids
Languages : en
Pages : 250
Book Description
"Artificial Intelligence and Data Analytics" is an essential manual that clarifies the intricate yet enthralling domains of AI and Data Analytics, providing readers with an all-encompassing examination of the revolutionary potential that these technologies possess in the present-day environment. An indispensable resource for professionals, academicians, and enthusiasts desiring a profound comprehension of the interrelationships among artificial intelligence and data analytics, this book has been painstakingly crafted. The book commences with a meticulously organized structure that establishes a strong groundwork, exploring the fundamental principles of data analytics, machine learning, and artificial intelligence. The narrative proceeds with case studies and real-world applications that shed light on the pragmatic ramifications of these technologies in various sectors, including healthcare, finance, and e-commerce. This book is distinguished by its nuanced treatment of ethical considerations, which addresses the conscientious and responsible application of artificial intelligence and data-driven insights. By delving into sophisticated algorithms and addressing the complexities of big data, the book provides readers with a comprehensive understanding of these ever-evolving domains through the application of both theoretical and practical expertise. Irrespective of one's level of expertise, "Artificial Intelligence and Data Analytics" provides an engaging exploration of the latest advancements and prospective prospects, assisting individuals in maximizing the capabilities of AI and Data Analytics within their specific fields.