Author: Dov M. Gabbay
Publisher:
ISBN: 9781904987390
Category : Computers
Languages : en
Pages : 584
Book Description
Logic for Artificial Intelligence and Information Technology is based on student notes used to teach logic to second year undergraduates and Artificial Intelligence to graduate students at the University of London since1984, first at Imperial College and later at King's College. Logic has been applied to a wide variety of subjects such as theoretical computer science, software engineering, hardware design, logic programming, computational linguistics and artificial intelligence. In this way it has served to stimulate the research for clear conceptual foundations. Over the past 20 years many extensions of classical logic such as temporal, modal, relevance, fuzzy, probabilistic and non-monotoinic logics have been widely used in computer science and artificial intelligence, therefore requiring new formulations of classical logic, which can be modified to yield the effect of the new applied logics. The text introduces classical logic in a goal directed way which can easily deviate into discussing other applied logics. It defines the many types of logics and differences between them. Dov Gabbay, FRSC, FAvH, FRSA, FBCS, is Augustus De Morgan Professor of Logic at the University of London. He has written over 300 papers in logic and over 20 books. He is Editor-in-Chief of several leading journals and has published over 50 handbooks of logic volumes. He is a world authority on applied logics and is one of the directors and founder of the UK charity the International Federation of Computational Logic
Logic for Artificial Intelligence and Information Technology
Author: Dov M. Gabbay
Publisher:
ISBN: 9781904987390
Category : Computers
Languages : en
Pages : 584
Book Description
Logic for Artificial Intelligence and Information Technology is based on student notes used to teach logic to second year undergraduates and Artificial Intelligence to graduate students at the University of London since1984, first at Imperial College and later at King's College. Logic has been applied to a wide variety of subjects such as theoretical computer science, software engineering, hardware design, logic programming, computational linguistics and artificial intelligence. In this way it has served to stimulate the research for clear conceptual foundations. Over the past 20 years many extensions of classical logic such as temporal, modal, relevance, fuzzy, probabilistic and non-monotoinic logics have been widely used in computer science and artificial intelligence, therefore requiring new formulations of classical logic, which can be modified to yield the effect of the new applied logics. The text introduces classical logic in a goal directed way which can easily deviate into discussing other applied logics. It defines the many types of logics and differences between them. Dov Gabbay, FRSC, FAvH, FRSA, FBCS, is Augustus De Morgan Professor of Logic at the University of London. He has written over 300 papers in logic and over 20 books. He is Editor-in-Chief of several leading journals and has published over 50 handbooks of logic volumes. He is a world authority on applied logics and is one of the directors and founder of the UK charity the International Federation of Computational Logic
Publisher:
ISBN: 9781904987390
Category : Computers
Languages : en
Pages : 584
Book Description
Logic for Artificial Intelligence and Information Technology is based on student notes used to teach logic to second year undergraduates and Artificial Intelligence to graduate students at the University of London since1984, first at Imperial College and later at King's College. Logic has been applied to a wide variety of subjects such as theoretical computer science, software engineering, hardware design, logic programming, computational linguistics and artificial intelligence. In this way it has served to stimulate the research for clear conceptual foundations. Over the past 20 years many extensions of classical logic such as temporal, modal, relevance, fuzzy, probabilistic and non-monotoinic logics have been widely used in computer science and artificial intelligence, therefore requiring new formulations of classical logic, which can be modified to yield the effect of the new applied logics. The text introduces classical logic in a goal directed way which can easily deviate into discussing other applied logics. It defines the many types of logics and differences between them. Dov Gabbay, FRSC, FAvH, FRSA, FBCS, is Augustus De Morgan Professor of Logic at the University of London. He has written over 300 papers in logic and over 20 books. He is Editor-in-Chief of several leading journals and has published over 50 handbooks of logic volumes. He is a world authority on applied logics and is one of the directors and founder of the UK charity the International Federation of Computational Logic
Logic for Computer Science and Artificial Intelligence
Author: Ricardo Caferra
Publisher: John Wiley & Sons
ISBN: 1118604261
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Logic and its components (propositional, first-order, non-classical) play a key role in Computer Science and Artificial Intelligence. While a large amount of information exists scattered throughout various media (books, journal articles, webpages, etc.), the diffuse nature of these sources is problematic and logic as a topic benefits from a unified approach. Logic for Computer Science and Artificial Intelligence utilizes this format, surveying the tableaux, resolution, Davis and Putnam methods, logic programming, as well as for example unification and subsumption. For non-classical logics, the translation method is detailed. Logic for Computer Science and Artificial Intelligence is the classroom-tested result of several years of teaching at Grenoble INP (Ensimag). It is conceived to allow self-instruction for a beginner with basic knowledge in Mathematics and Computer Science, but is also highly suitable for use in traditional courses. The reader is guided by clearly motivated concepts, introductions, historical remarks, side notes concerning connections with other disciplines, and numerous exercises, complete with detailed solutions, The title provides the reader with the tools needed to arrive naturally at practical implementations of the concepts and techniques discussed, allowing for the design of algorithms to solve problems.
Publisher: John Wiley & Sons
ISBN: 1118604261
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Logic and its components (propositional, first-order, non-classical) play a key role in Computer Science and Artificial Intelligence. While a large amount of information exists scattered throughout various media (books, journal articles, webpages, etc.), the diffuse nature of these sources is problematic and logic as a topic benefits from a unified approach. Logic for Computer Science and Artificial Intelligence utilizes this format, surveying the tableaux, resolution, Davis and Putnam methods, logic programming, as well as for example unification and subsumption. For non-classical logics, the translation method is detailed. Logic for Computer Science and Artificial Intelligence is the classroom-tested result of several years of teaching at Grenoble INP (Ensimag). It is conceived to allow self-instruction for a beginner with basic knowledge in Mathematics and Computer Science, but is also highly suitable for use in traditional courses. The reader is guided by clearly motivated concepts, introductions, historical remarks, side notes concerning connections with other disciplines, and numerous exercises, complete with detailed solutions, The title provides the reader with the tools needed to arrive naturally at practical implementations of the concepts and techniques discussed, allowing for the design of algorithms to solve problems.
Logic-Based Artificial Intelligence
Author: Jack Minker
Publisher: Springer Science & Business Media
ISBN: 9780792372240
Category : Computers
Languages : en
Pages : 640
Book Description
The use of mathematical logic as a formalism for artificial intelligence was recognized by John McCarthy in 1959 in his paper on Programs with Common Sense. In a series of papers in the 1960's he expanded upon these ideas and continues to do so to this date. It is now 41 years since the idea of using a formal mechanism for AI arose. It is therefore appropriate to consider some of the research, applications and implementations that have resulted from this idea. In early 1995 John McCarthy suggested to me that we have a workshop on Logic-Based Artificial Intelligence (LBAI). In June 1999, the Workshop on Logic-Based Artificial Intelligence was held as a consequence of McCarthy's suggestion. The workshop came about with the support of Ephraim Glinert of the National Science Foundation (IIS-9S2013S), the American Association for Artificial Intelligence who provided support for graduate students to attend, and Joseph JaJa, Director of the University of Maryland Institute for Advanced Computer Studies who provided both manpower and financial support, and the Department of Computer Science. We are grateful for their support. This book consists of refereed papers based on presentations made at the Workshop. Not all of the Workshop participants were able to contribute papers for the book. The common theme of papers at the workshop and in this book is the use of logic as a formalism to solve problems in AI.
Publisher: Springer Science & Business Media
ISBN: 9780792372240
Category : Computers
Languages : en
Pages : 640
Book Description
The use of mathematical logic as a formalism for artificial intelligence was recognized by John McCarthy in 1959 in his paper on Programs with Common Sense. In a series of papers in the 1960's he expanded upon these ideas and continues to do so to this date. It is now 41 years since the idea of using a formal mechanism for AI arose. It is therefore appropriate to consider some of the research, applications and implementations that have resulted from this idea. In early 1995 John McCarthy suggested to me that we have a workshop on Logic-Based Artificial Intelligence (LBAI). In June 1999, the Workshop on Logic-Based Artificial Intelligence was held as a consequence of McCarthy's suggestion. The workshop came about with the support of Ephraim Glinert of the National Science Foundation (IIS-9S2013S), the American Association for Artificial Intelligence who provided support for graduate students to attend, and Joseph JaJa, Director of the University of Maryland Institute for Advanced Computer Studies who provided both manpower and financial support, and the Department of Computer Science. We are grateful for their support. This book consists of refereed papers based on presentations made at the Workshop. Not all of the Workshop participants were able to contribute papers for the book. The common theme of papers at the workshop and in this book is the use of logic as a formalism to solve problems in AI.
Artificial Intelligence and Computing Logic
Author: Cyrus F. Nourani
Publisher: CRC Press
ISBN: 1000400654
Category : Business & Economics
Languages : en
Pages : 286
Book Description
Focusing on the cutting-edge applications of AI cognitive computing from neuromorphic to quantum cognition as applied to AI business analytics, this new volume explores AI’s importance in managing cognitive processes along with ontological modeling concepts for venturing into new business frontiers. The volume presents a selection of significant new accomplishments in the areas of AI cognitive computing ranging from neurocognition perception and decision-making in the human brain—combining neurocognitive techniques and effective computing—to basic facial recognition computing models. Topics include: Agent neurocomputing techniques for facial expression recognition Computing haptic motion and ontology epistemic Characterizations of morph schemas for visual analytics Learning and perceptive computing Functional and structural neuroimaging modeling Observed links between facial recognition and affective emotional processes Interaction of cognitive and emotional processes during social decision-making Neurocognitive processing of emotional facial expressions in individuals Neurocognitive affective system for emotive robot androids Virtual reality-based affect adaptive neuromorphic computing Executive surveys indicate that cognitive adoption is very important in business strategy for success and to remain competitive. Employing cognitive-based processes provides the way to get the right information in the right hands at the right time, which is the key to winning in the digital era and to driving business value that emphasizes competitive differentiation. Several chapters of the volume address the goal of using cognitive technology to improve search capabilities, to provide personalized customer service in business and in health and wellness, and to create better workflow management. Key features: Looks at the newest frontiers on very popular AI and analytics topics Discusses new techniques for visual analytics and data filtering Shows how AI and cognitive science merges with quantum neurocognitive computing Presents ontology models with ontology preservation data filtering techniques Provides a cross-transposition on AI and digitizations for business model innovations Artificial Intelligence and Computing Logic: Cognitive Technology for AI Business Analytics is a valuable resource that informs businesses and other enterprises the value of artificial intelligence and computing logic applications.
Publisher: CRC Press
ISBN: 1000400654
Category : Business & Economics
Languages : en
Pages : 286
Book Description
Focusing on the cutting-edge applications of AI cognitive computing from neuromorphic to quantum cognition as applied to AI business analytics, this new volume explores AI’s importance in managing cognitive processes along with ontological modeling concepts for venturing into new business frontiers. The volume presents a selection of significant new accomplishments in the areas of AI cognitive computing ranging from neurocognition perception and decision-making in the human brain—combining neurocognitive techniques and effective computing—to basic facial recognition computing models. Topics include: Agent neurocomputing techniques for facial expression recognition Computing haptic motion and ontology epistemic Characterizations of morph schemas for visual analytics Learning and perceptive computing Functional and structural neuroimaging modeling Observed links between facial recognition and affective emotional processes Interaction of cognitive and emotional processes during social decision-making Neurocognitive processing of emotional facial expressions in individuals Neurocognitive affective system for emotive robot androids Virtual reality-based affect adaptive neuromorphic computing Executive surveys indicate that cognitive adoption is very important in business strategy for success and to remain competitive. Employing cognitive-based processes provides the way to get the right information in the right hands at the right time, which is the key to winning in the digital era and to driving business value that emphasizes competitive differentiation. Several chapters of the volume address the goal of using cognitive technology to improve search capabilities, to provide personalized customer service in business and in health and wellness, and to create better workflow management. Key features: Looks at the newest frontiers on very popular AI and analytics topics Discusses new techniques for visual analytics and data filtering Shows how AI and cognitive science merges with quantum neurocognitive computing Presents ontology models with ontology preservation data filtering techniques Provides a cross-transposition on AI and digitizations for business model innovations Artificial Intelligence and Computing Logic: Cognitive Technology for AI Business Analytics is a valuable resource that informs businesses and other enterprises the value of artificial intelligence and computing logic applications.
The Essential Turing
Author: B. J. Copeland
Publisher: Clarendon Press
ISBN: 0191606863
Category : Science
Languages : en
Pages : 1428
Book Description
The ideas that gave birth to the computer age Alan Turing, pioneer of computing and WWII codebreaker, was one of the most important and influential thinkers of the twentieth century. In this volume for the first time his key writings are made available to a broad, non-specialist readership. They make fascinating reading both in their own right and for their historic significance: contemporary computational theory, cognitive science, artificial intelligence, and artificial life all spring from this ground-breaking work, which is also rich in philosophical and logical insight.
Publisher: Clarendon Press
ISBN: 0191606863
Category : Science
Languages : en
Pages : 1428
Book Description
The ideas that gave birth to the computer age Alan Turing, pioneer of computing and WWII codebreaker, was one of the most important and influential thinkers of the twentieth century. In this volume for the first time his key writings are made available to a broad, non-specialist readership. They make fascinating reading both in their own right and for their historic significance: contemporary computational theory, cognitive science, artificial intelligence, and artificial life all spring from this ground-breaking work, which is also rich in philosophical and logical insight.
Logical Foundations of Artificial Intelligence
Author: Michael R. Genesereth
Publisher: Morgan Kaufmann
ISBN: 0128015543
Category : Computers
Languages : en
Pages : 427
Book Description
Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic. The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system. The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture. End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.
Publisher: Morgan Kaufmann
ISBN: 0128015543
Category : Computers
Languages : en
Pages : 427
Book Description
Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic. The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system. The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture. End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.
Markov Logic
Author: Pedro Dechter
Publisher: Springer Nature
ISBN: 3031015495
Category : Computers
Languages : en
Pages : 145
Book Description
Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion
Publisher: Springer Nature
ISBN: 3031015495
Category : Computers
Languages : en
Pages : 145
Book Description
Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion
Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 5: Logic Programming
Author: Dov M. Gabbay
Publisher: Clarendon Press
ISBN: 0191546283
Category : Computers
Languages : en
Pages : 818
Book Description
The Handbook of Logic in Artificial Intelligence and Logic Programming is a multi-volume work covering all major areas of the application of logic to artificial intelligence and logic programming. The authors are chosen on an international basis and are leaders in the fields covered. Volume 5 is the last in this well-regarded series. Logic is now widely recognized as one of the foundational disciplines of computing. It has found applications in virtually all aspects of the subject, from software and hardware engineering to programming languages and artificial intelligence. In response to the growing need for an in-depth survey of these applications the Handbook of Logic in Artificial Intelligence and its companion, the Handbook of Logic in Computer Science have been created. The Handbooks are a combination of authoritative exposition, comprehensive survey, and fundamental research exploring the underlying themes in the various areas. Some mathematical background is assumed, and much of the material will be of interest to logicians and mathematicians. Volume 5 focuses particularly on logic programming. The chapters, which in many cases are of monograph length and scope, emphasize possible unifying themes.
Publisher: Clarendon Press
ISBN: 0191546283
Category : Computers
Languages : en
Pages : 818
Book Description
The Handbook of Logic in Artificial Intelligence and Logic Programming is a multi-volume work covering all major areas of the application of logic to artificial intelligence and logic programming. The authors are chosen on an international basis and are leaders in the fields covered. Volume 5 is the last in this well-regarded series. Logic is now widely recognized as one of the foundational disciplines of computing. It has found applications in virtually all aspects of the subject, from software and hardware engineering to programming languages and artificial intelligence. In response to the growing need for an in-depth survey of these applications the Handbook of Logic in Artificial Intelligence and its companion, the Handbook of Logic in Computer Science have been created. The Handbooks are a combination of authoritative exposition, comprehensive survey, and fundamental research exploring the underlying themes in the various areas. Some mathematical background is assumed, and much of the material will be of interest to logicians and mathematicians. Volume 5 focuses particularly on logic programming. The chapters, which in many cases are of monograph length and scope, emphasize possible unifying themes.
Logics for Computer and Data Sciences, and Artificial Intelligence
Author: Lech T. Polkowski
Publisher: Springer
ISBN: 9783030916824
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This volume offers the reader a systematic and throughout account of branches of logic instrumental for computer science, data science and artificial intelligence. Addressed in it are propositional, predicate, modal, epistemic, dynamic, temporal logics as well as applicable in data science many-valued logics and logics of concepts (rough logics). It offers a look into second-order logics and approximate logics of parts. The book concludes with appendices on set theory, algebraic structures, computability, complexity, MV-algebras and transition systems, automata and formal grammars. By this composition of the text, the reader obtains a self-contained exposition that can serve as the textbook on logics and relevant disciplines as well as a reference text.
Publisher: Springer
ISBN: 9783030916824
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This volume offers the reader a systematic and throughout account of branches of logic instrumental for computer science, data science and artificial intelligence. Addressed in it are propositional, predicate, modal, epistemic, dynamic, temporal logics as well as applicable in data science many-valued logics and logics of concepts (rough logics). It offers a look into second-order logics and approximate logics of parts. The book concludes with appendices on set theory, algebraic structures, computability, complexity, MV-algebras and transition systems, automata and formal grammars. By this composition of the text, the reader obtains a self-contained exposition that can serve as the textbook on logics and relevant disciplines as well as a reference text.
Introduction to Artificial Intelligence
Author: Wolfgang Ertel
Publisher: Springer
ISBN: 3319584871
Category : Computers
Languages : en
Pages : 365
Book Description
This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated second edition also includes new material on deep learning. Topics and features: presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website; contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; reports on developments in deep learning, including applications of neural networks to generate creative content such as text, music and art (NEW); examines performance evaluation of clustering algorithms, and presents two practical examples explaining Bayes’ theorem and its relevance in everyday life (NEW); discusses search algorithms, analyzing the cycle check, explaining route planning for car navigation systems, and introducing Monte Carlo Tree Search (NEW); includes a section in the introduction on AI and society, discussing the implications of AI on topics such as employment and transportation (NEW). Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.
Publisher: Springer
ISBN: 3319584871
Category : Computers
Languages : en
Pages : 365
Book Description
This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated second edition also includes new material on deep learning. Topics and features: presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website; contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; reports on developments in deep learning, including applications of neural networks to generate creative content such as text, music and art (NEW); examines performance evaluation of clustering algorithms, and presents two practical examples explaining Bayes’ theorem and its relevance in everyday life (NEW); discusses search algorithms, analyzing the cycle check, explaining route planning for car navigation systems, and introducing Monte Carlo Tree Search (NEW); includes a section in the introduction on AI and society, discussing the implications of AI on topics such as employment and transportation (NEW). Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.