Author: Yaroslav D. Sergeyev
Publisher: Yaroslav D. Sergeyev
ISBN: 8889064013
Category : Science
Languages : en
Pages : 112
Book Description
The first chapter of the book gives a brief description of the modern viewpoint on real numbers and presents the famous results of Georg Cantor regarding infinity. The second chapter has a preparative character and links the first and the third parts of the book. On the one hand, it shows that the commonly accepted point of view on numbers and infinity is not so clear as it seems at first sight (for example, it leads to numerous paradoxes). On the other hand, the chapter contains preliminary observations that will be used in the constructive introduction of a new arithmetic of infinity, given in the third chapter. This last part of the book contains the main results. It introduces notions of infinite and infinitesimal numbers, extended natural and real numbers, and operations with them. Surprisingly, the introduced arithmetical operations result in being very simple and are obtained as immediate extensions of the usual addition, multiplication, and division of finite numbers to infinite ones. This simplicity is a consequence of a newly developed positional numeral system used to express infinite numbers. Finally, the chapter contains solutions to a number of paradoxes regarding infinity (we can say that the new approach allows us to avoid paradoxes) and some examples of applications. In order to broaden the audience, the book was written as a popular one. The interested reader can find a number of technical articles of several researches that use the approach introduced here for solving a variety of research problems at the web page of the author. The author Yaroslav D. Sergeyev is Distinguished Professor and Head of Numerical Calculus Laboratory at the University of Calabria, Italy. He is also Professor (part-time contract) at Lobachevsky Nizhni Novgorod State University, Russia. His research interests include numerical analysis, global optimization, infinity computing, set theory, number theory, fractals, and parallel computing. He has been awarded several national and international prizes (Pythagoras International Prize in Mathematics, Italy; Lagrange Lecture, Turin University, Italy; MAIK Prize for the best scientific monograph published in Russian, Moscow, etc.). His list of scientific publications contains more than 200 items. He is a member of editorial boards of 5 international journals and has given more than 50 plenary and keynote lectures at prestigious international congresses.
Arithmetic of infinity
Author: Yaroslav D. Sergeyev
Publisher: Yaroslav D. Sergeyev
ISBN: 8889064013
Category : Science
Languages : en
Pages : 112
Book Description
The first chapter of the book gives a brief description of the modern viewpoint on real numbers and presents the famous results of Georg Cantor regarding infinity. The second chapter has a preparative character and links the first and the third parts of the book. On the one hand, it shows that the commonly accepted point of view on numbers and infinity is not so clear as it seems at first sight (for example, it leads to numerous paradoxes). On the other hand, the chapter contains preliminary observations that will be used in the constructive introduction of a new arithmetic of infinity, given in the third chapter. This last part of the book contains the main results. It introduces notions of infinite and infinitesimal numbers, extended natural and real numbers, and operations with them. Surprisingly, the introduced arithmetical operations result in being very simple and are obtained as immediate extensions of the usual addition, multiplication, and division of finite numbers to infinite ones. This simplicity is a consequence of a newly developed positional numeral system used to express infinite numbers. Finally, the chapter contains solutions to a number of paradoxes regarding infinity (we can say that the new approach allows us to avoid paradoxes) and some examples of applications. In order to broaden the audience, the book was written as a popular one. The interested reader can find a number of technical articles of several researches that use the approach introduced here for solving a variety of research problems at the web page of the author. The author Yaroslav D. Sergeyev is Distinguished Professor and Head of Numerical Calculus Laboratory at the University of Calabria, Italy. He is also Professor (part-time contract) at Lobachevsky Nizhni Novgorod State University, Russia. His research interests include numerical analysis, global optimization, infinity computing, set theory, number theory, fractals, and parallel computing. He has been awarded several national and international prizes (Pythagoras International Prize in Mathematics, Italy; Lagrange Lecture, Turin University, Italy; MAIK Prize for the best scientific monograph published in Russian, Moscow, etc.). His list of scientific publications contains more than 200 items. He is a member of editorial boards of 5 international journals and has given more than 50 plenary and keynote lectures at prestigious international congresses.
Publisher: Yaroslav D. Sergeyev
ISBN: 8889064013
Category : Science
Languages : en
Pages : 112
Book Description
The first chapter of the book gives a brief description of the modern viewpoint on real numbers and presents the famous results of Georg Cantor regarding infinity. The second chapter has a preparative character and links the first and the third parts of the book. On the one hand, it shows that the commonly accepted point of view on numbers and infinity is not so clear as it seems at first sight (for example, it leads to numerous paradoxes). On the other hand, the chapter contains preliminary observations that will be used in the constructive introduction of a new arithmetic of infinity, given in the third chapter. This last part of the book contains the main results. It introduces notions of infinite and infinitesimal numbers, extended natural and real numbers, and operations with them. Surprisingly, the introduced arithmetical operations result in being very simple and are obtained as immediate extensions of the usual addition, multiplication, and division of finite numbers to infinite ones. This simplicity is a consequence of a newly developed positional numeral system used to express infinite numbers. Finally, the chapter contains solutions to a number of paradoxes regarding infinity (we can say that the new approach allows us to avoid paradoxes) and some examples of applications. In order to broaden the audience, the book was written as a popular one. The interested reader can find a number of technical articles of several researches that use the approach introduced here for solving a variety of research problems at the web page of the author. The author Yaroslav D. Sergeyev is Distinguished Professor and Head of Numerical Calculus Laboratory at the University of Calabria, Italy. He is also Professor (part-time contract) at Lobachevsky Nizhni Novgorod State University, Russia. His research interests include numerical analysis, global optimization, infinity computing, set theory, number theory, fractals, and parallel computing. He has been awarded several national and international prizes (Pythagoras International Prize in Mathematics, Italy; Lagrange Lecture, Turin University, Italy; MAIK Prize for the best scientific monograph published in Russian, Moscow, etc.). His list of scientific publications contains more than 200 items. He is a member of editorial boards of 5 international journals and has given more than 50 plenary and keynote lectures at prestigious international congresses.
Naming Infinity
Author: Loren Graham
Publisher: Harvard University Press
ISBN: 0674032934
Category : Education
Languages : en
Pages : 252
Book Description
The intellectual drama will attract readers who are interested in mystical religion and the foundations of mathematics. The personal drama will attract readers who are interested in a human tragedy with characters who met their fates with exceptional courage--Freeman Dyson.
Publisher: Harvard University Press
ISBN: 0674032934
Category : Education
Languages : en
Pages : 252
Book Description
The intellectual drama will attract readers who are interested in mystical religion and the foundations of mathematics. The personal drama will attract readers who are interested in a human tragedy with characters who met their fates with exceptional courage--Freeman Dyson.
Roads to Infinity
Author: John Stillwell
Publisher: CRC Press
ISBN: 1439865507
Category : Mathematics
Languages : en
Pages : 202
Book Description
Winner of a CHOICE Outstanding Academic Title Award for 2011!This book offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. The treatment is h
Publisher: CRC Press
ISBN: 1439865507
Category : Mathematics
Languages : en
Pages : 202
Book Description
Winner of a CHOICE Outstanding Academic Title Award for 2011!This book offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. The treatment is h
Beyond Infinity
Author: Eugenia Cheng
Publisher: Profile Books
ISBN: 1782830812
Category : Mathematics
Languages : en
Pages : 191
Book Description
SHORTLISTED FOR THE 2017 ROYAL SOCIETY SCIENCE BOOK PRIZE Even small children know there are infinitely many whole numbers - start counting and you'll never reach the end. But there are also infinitely many decimal numbers between zero and one. Are these two types of infinity the same? Are they larger or smaller than each other? Can we even talk about 'larger' and 'smaller' when we talk about infinity? In Beyond Infinity, international maths sensation Eugenia Cheng reveals the inner workings of infinity. What happens when a new guest arrives at your infinite hotel - but you already have an infinite number of guests? How does infinity give Zeno's tortoise the edge in a paradoxical foot-race with Achilles? And can we really make an infinite number of cookies from a finite amount of cookie dough? Wielding an armoury of inventive, intuitive metaphor, Cheng draws beginners and enthusiasts alike into the heart of this mysterious, powerful concept to reveal fundamental truths about mathematics, all the way from the infinitely large down to the infinitely small.
Publisher: Profile Books
ISBN: 1782830812
Category : Mathematics
Languages : en
Pages : 191
Book Description
SHORTLISTED FOR THE 2017 ROYAL SOCIETY SCIENCE BOOK PRIZE Even small children know there are infinitely many whole numbers - start counting and you'll never reach the end. But there are also infinitely many decimal numbers between zero and one. Are these two types of infinity the same? Are they larger or smaller than each other? Can we even talk about 'larger' and 'smaller' when we talk about infinity? In Beyond Infinity, international maths sensation Eugenia Cheng reveals the inner workings of infinity. What happens when a new guest arrives at your infinite hotel - but you already have an infinite number of guests? How does infinity give Zeno's tortoise the edge in a paradoxical foot-race with Achilles? And can we really make an infinite number of cookies from a finite amount of cookie dough? Wielding an armoury of inventive, intuitive metaphor, Cheng draws beginners and enthusiasts alike into the heart of this mysterious, powerful concept to reveal fundamental truths about mathematics, all the way from the infinitely large down to the infinitely small.
Playing with Infinity
Author: Rozsa Peter
Publisher:
ISBN: 9780844652351
Category :
Languages : en
Pages :
Book Description
Popular account ranges from counting to mathematical logic and covers many concepts related to infinity: graphic representation of functions; pairings, other combinations; prime numbers; logarithms, circular functions; more. 216 illustrations.
Publisher:
ISBN: 9780844652351
Category :
Languages : en
Pages :
Book Description
Popular account ranges from counting to mathematical logic and covers many concepts related to infinity: graphic representation of functions; pairings, other combinations; prime numbers; logarithms, circular functions; more. 216 illustrations.
The Invention of Infinity
Author: Judith Veronica Field
Publisher: Oxford University Press, USA
ISBN: 0198523947
Category : Art
Languages : en
Pages : 264
Book Description
Fully illustrated, this story brings together the histories of arts and mathematics and shows how infinity at last acquired a precise mathematical meaning.
Publisher: Oxford University Press, USA
ISBN: 0198523947
Category : Art
Languages : en
Pages : 264
Book Description
Fully illustrated, this story brings together the histories of arts and mathematics and shows how infinity at last acquired a precise mathematical meaning.
The Joy of X
Author: Steven Henry Strogatz
Publisher: Houghton Mifflin Harcourt
ISBN: 0547517653
Category : Mathematics
Languages : en
Pages : 333
Book Description
A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the "New York Times."
Publisher: Houghton Mifflin Harcourt
ISBN: 0547517653
Category : Mathematics
Languages : en
Pages : 333
Book Description
A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the "New York Times."
Understanding Infinity
Author: Anthony Gardiner
Publisher: Courier Corporation
ISBN: 9780486425382
Category : Mathematics
Languages : en
Pages : 324
Book Description
Conceived by the author as an introduction to "why the calculus works," this volume offers a 4-part treatment: an overview; a detailed examination of the infinite processes arising in the realm of numbers; an exploration of the extent to which familiar geometric notions depend on infinite processes; and the evolution of the concept of functions. 1982 edition.
Publisher: Courier Corporation
ISBN: 9780486425382
Category : Mathematics
Languages : en
Pages : 324
Book Description
Conceived by the author as an introduction to "why the calculus works," this volume offers a 4-part treatment: an overview; a detailed examination of the infinite processes arising in the realm of numbers; an exploration of the extent to which familiar geometric notions depend on infinite processes; and the evolution of the concept of functions. 1982 edition.
The Logic of Infinity
Author: Barnaby Sheppard
Publisher: Cambridge University Press
ISBN: 1107058317
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book conveys to the novice the big ideas in the rigorous mathematical theory of infinite sets.
Publisher: Cambridge University Press
ISBN: 1107058317
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book conveys to the novice the big ideas in the rigorous mathematical theory of infinite sets.
Infinity
Author: Ian Stewart
Publisher: Oxford University Press
ISBN: 0198755236
Category : Mathematics
Languages : en
Pages : 161
Book Description
Ian Stewart considers the concept of infinity and the profound role it plays in mathematics, logic, physics, cosmology, and philosophy. He shows that working with infinity is not just an abstract, intellectual exercise, and analyses its important practical everyday applications.
Publisher: Oxford University Press
ISBN: 0198755236
Category : Mathematics
Languages : en
Pages : 161
Book Description
Ian Stewart considers the concept of infinity and the profound role it plays in mathematics, logic, physics, cosmology, and philosophy. He shows that working with infinity is not just an abstract, intellectual exercise, and analyses its important practical everyday applications.