Arithmetic Geometry: Computation and Applications

Arithmetic Geometry: Computation and Applications PDF Author: Yves Aubry
Publisher: American Mathematical Soc.
ISBN: 1470442124
Category : Coding theory
Languages : en
Pages : 175

Get Book Here

Book Description
For thirty years, the biennial international conference AGC T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume contains the proceedings of the 16th international conference, held from June 19–23, 2017. The papers are original research articles covering a large range of topics, including weight enumerators for codes, function field analogs of the Brauer–Siegel theorem, the computation of cohomological invariants of curves, the trace distributions of algebraic groups, and applications of the computation of zeta functions of curves. Despite the varied topics, the papers share a common thread: the beautiful interplay between abstract theory and explicit results.

Arithmetic Geometry: Computation and Applications

Arithmetic Geometry: Computation and Applications PDF Author: Yves Aubry
Publisher: American Mathematical Soc.
ISBN: 1470442124
Category : Coding theory
Languages : en
Pages : 175

Get Book Here

Book Description
For thirty years, the biennial international conference AGC T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume contains the proceedings of the 16th international conference, held from June 19–23, 2017. The papers are original research articles covering a large range of topics, including weight enumerators for codes, function field analogs of the Brauer–Siegel theorem, the computation of cohomological invariants of curves, the trace distributions of algebraic groups, and applications of the computation of zeta functions of curves. Despite the varied topics, the papers share a common thread: the beautiful interplay between abstract theory and explicit results.

Computational Arithmetic Geometry

Computational Arithmetic Geometry PDF Author: Kristin Estella Lauter
Publisher: American Mathematical Soc.
ISBN: 0821843206
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
With the recent increase in available computing power, new computations are possible in many areas of arithmetic geometry. To name just a few examples, Cremona's tables of elliptic curves now go up to conductor 120,000 instead of just conductor 1,000, tables of Hilbert class fields are known for discriminant up to at least 5,000, and special values of Hilbert and Siegel modular forms can be calculated to extremely high precision. In many cases, these experimental capabilities haveled to new observations and ideas for progress in the field. They have also led to natural algorithmic questions on the feasibility and efficiency of many computations, especially for the purpose of applications in cryptography. The AMS Special Session on Computational Arithmetic Geometry, held onApril 29-30, 2006, in San Francisco, CA, gathered together many of the people currently working on the computational and algorithmic aspects of arithmetic geometry. This volume contains research articles related to talks given at the session. The majority of articles are devoted to various aspects of arithmetic geometry, mainly with a computational approach.

Number Theory and Geometry: An Introduction to Arithmetic Geometry

Number Theory and Geometry: An Introduction to Arithmetic Geometry PDF Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Arithmetical algebraic geometry
Languages : en
Pages : 488

Get Book Here

Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.

Algebra, Arithmetic and Geometry with Applications

Algebra, Arithmetic and Geometry with Applications PDF Author: Chris Christensen
Publisher: Springer Science & Business Media
ISBN: 3642184871
Category : Mathematics
Languages : en
Pages : 778

Get Book Here

Book Description
Proceedings of the Conference on Algebra and Algebraic Geometry with Applications, July 19 – 26, 2000, at Purdue University to honor Professor Shreeram S. Abhyankar on the occasion of his seventieth birthday. Eighty-five of Professor Abhyankar's students, collaborators, and colleagues were invited participants. Sixty participants presented papers related to Professor Abhyankar's broad areas of mathematical interest. Sessions were held on algebraic geometry, singularities, group theory, Galois theory, combinatorics, Drinfield modules, affine geometry, and the Jacobian problem. This volume offers an outstanding collection of papers by expert authors.

Arithmetic Geometry

Arithmetic Geometry PDF Author: Yves Aubry
Publisher:
ISBN: 9781470451042
Category : MATHEMATICS
Languages : en
Pages : 186

Get Book Here

Book Description
For thirty years, the biennial international conference AGC^2T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume contains the proceedings of the 16th international conference, held from June 19-23, 2017. The papers are original research articles covering a large range of topics, including weight enumerators for codes, function field analogs of the Brauer-Siegel theore.

Applications of Geometric Algebra in Computer Science and Engineering

Applications of Geometric Algebra in Computer Science and Engineering PDF Author: Leo Dorst
Publisher: Springer Science & Business Media
ISBN: 146120089X
Category : Mathematics
Languages : en
Pages : 479

Get Book Here

Book Description
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi- particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.

Computational Geometry and Its Applications

Computational Geometry and Its Applications PDF Author: Hartmut Noltemeier
Publisher: Springer Science & Business Media
ISBN: 9783540503354
Category : Computers
Languages : en
Pages : 264

Get Book Here

Book Description
The International Workshop CG '88 on "Computational Geometry" was held at the University of Würzburg, FRG, March 24-25, 1988. As the interest in the fascinating field of Computational Geometry and its Applications has grown very quickly in recent years the organizers felt the need to have a workshop, where a suitable number of invited participants could concentrate their efforts in this field to cover a broad spectrum of topics and to communicate in a stimulating atmosphere. This workshop was attended by some fifty invited scientists. The scientific program consisted of 22 contributions, of which 18 papers with one additional paper (M. Reichling) are contained in the present volume. The contributions covered important areas not only of fundamental aspects of Computational Geometry but a lot of interesting and most promising applications: Algorithmic Aspects of Geometry, Arrangements, Nearest-Neighbor-Problems and Abstract Voronoi-Diagrams, Data Structures for Geometric Objects, Geo-Relational Algebra, Geometric Modeling, Clustering and Visualizing Geometric Objects, Finite Element Methods, Triangulating in Parallel, Animation and Ray Tracing, Robotics: Motion Planning, Collision Avoidance, Visibility, Smooth Surfaces, Basic Models of Geometric Computations, Automatizing Geometric Proofs and Constructions.

Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects

Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects PDF Author: Frank Neumann
Publisher: Springer Nature
ISBN: 3030789772
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.

Uncertainty in Geometric Computations

Uncertainty in Geometric Computations PDF Author: Joab Winkler
Publisher: Springer
ISBN: 9781461352525
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This book contains the proceedings of the workshop Uncertainty in Geomet ric Computations that was held in Sheffield, England, July 5-6, 2001. A total of 59 delegates from 5 countries in Europe, North America and Asia attended the workshop. The workshop provided a forum for the discussion of com putational methods for quantifying, representing and assessing the effects of uncertainty in geometric computations. It was organised around lectures by invited speakers, and presentations in poster form from participants. Computer simulations and modelling are used frequently in science and engi neering, in applications ranging from the understanding of natural and artificial phenomena, to the design, test and manufacturing stages of production. This widespread use necessarily implies that detailed knowledge of the limitations of computer simulations is required. In particular, the usefulness of a computer simulation is directly dependent on the user's knowledge of the uncertainty in the simulation. Although an understanding of the phenomena being modelled is an important requirement of a good computer simulation, the model will be plagued by deficiencies if the errors and uncertainties in it are not consid ered when the results are analysed. The applications of computer modelling are large and diverse, but the workshop focussed on the management of un certainty in three areas : Geometric modelling, computer vision, and computer graphics.

Computational Geometry

Computational Geometry PDF Author: Mark de Berg
Publisher: Springer Science & Business Media
ISBN: 3662042452
Category : Computers
Languages : en
Pages : 370

Get Book Here

Book Description
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.