Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms

Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms PDF Author: Oliver Schütze
Publisher: Springer Nature
ISBN: 3030637735
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
This book presents an overview of archiving strategies developed over the last years by the authors that deal with suitable approximations of the sets of optimal and nearly optimal solutions of multi-objective optimization problems by means of stochastic search algorithms. All presented archivers are analyzed with respect to the approximation qualities of the limit archives that they generate and the upper bounds of the archive sizes. The convergence analysis will be done using a very broad framework that involves all existing stochastic search algorithms and that will only use minimal assumptions on the process to generate new candidate solutions. All of the presented archivers can effortlessly be coupled with any set-based multi-objective search algorithm such as multi-objective evolutionary algorithms, and the resulting hybrid method takes over the convergence properties of the chosen archiver. This book hence targets at all algorithm designers and practitioners in the field of multi-objective optimization.

Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms

Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms PDF Author: Oliver Schütze
Publisher: Springer Nature
ISBN: 3030637735
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
This book presents an overview of archiving strategies developed over the last years by the authors that deal with suitable approximations of the sets of optimal and nearly optimal solutions of multi-objective optimization problems by means of stochastic search algorithms. All presented archivers are analyzed with respect to the approximation qualities of the limit archives that they generate and the upper bounds of the archive sizes. The convergence analysis will be done using a very broad framework that involves all existing stochastic search algorithms and that will only use minimal assumptions on the process to generate new candidate solutions. All of the presented archivers can effortlessly be coupled with any set-based multi-objective search algorithm such as multi-objective evolutionary algorithms, and the resulting hybrid method takes over the convergence properties of the chosen archiver. This book hence targets at all algorithm designers and practitioners in the field of multi-objective optimization.

Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization PDF Author: Carlos M. Fonseca
Publisher: Springer Science & Business Media
ISBN: 3540018697
Category : Business & Economics
Languages : en
Pages : 825

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimization, EMO 2003, held in Faro, Portugal, in April 2003. The 56 revised full papers presented were carefully reviewed and selected from a total of 100 submissions. The papers are organized in topical sections on objective handling and problem decomposition, algorithm improvements, online adaptation, problem construction, performance analysis and comparison, alternative methods, implementation, and applications.

Applications of Multi-objective Evolutionary Algorithms

Applications of Multi-objective Evolutionary Algorithms PDF Author: Carlos A. Coello Coello
Publisher: World Scientific
ISBN: 9812561064
Category : Computers
Languages : en
Pages : 792

Get Book Here

Book Description
- Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains

Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization PDF Author: Kalyanmoy Deb
Publisher: Springer
ISBN: 303012598X
Category : Computers
Languages : en
Pages : 768

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 10th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2019 held in East Lansing, MI, USA, in March 2019. The 59 revised full papers were carefully reviewed and selected from 76 submissions. The papers are divided into 8 categories, each representing a key area of current interest in the EMO field today. They include theoretical developments, algorithmic developments, issues in many-objective optimization, performance metrics, knowledge extraction and surrogate-based EMO, multi-objective combinatorial problem solving, MCDM and interactive EMO methods, and applications.

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms PDF Author: Kalyanmoy Deb
Publisher: John Wiley & Sons
ISBN: 9780471873396
Category : Mathematics
Languages : en
Pages : 540

Get Book Here

Book Description
Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.

Evolutionary Multiobjective Optimization

Evolutionary Multiobjective Optimization PDF Author: Ajith Abraham
Publisher: Springer Science & Business Media
ISBN: 1846281377
Category : Computers
Languages : en
Pages : 313

Get Book Here

Book Description
Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.

Evolutionary Algorithms for Solving Multi-Objective Problems

Evolutionary Algorithms for Solving Multi-Objective Problems PDF Author: Carlos Coello Coello
Publisher: Springer Science & Business Media
ISBN: 0387367977
Category : Computers
Languages : en
Pages : 810

Get Book Here

Book Description
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.

Fuzzy Systems and Data Mining IX

Fuzzy Systems and Data Mining IX PDF Author: A.J. Tallón-Ballesteros
Publisher: IOS Press
ISBN: 164368471X
Category : Computers
Languages : en
Pages : 980

Get Book Here

Book Description
Fuzzy systems and data mining are indispensible aspects of the digital technology on which we now all depend. Fuzzy logic is intrinsic to applications in the electrical, chemical and engineering industries, and also in the fields of management and environmental issues. Data mining is indispensible in dealing with big data, massive data, and scalable, parallel and distributed algorithms. This book presents the proceedings of FSDM 2023, the 9th International Conference on Fuzzy Systems and Data Mining, held from 10-13 November 2023 as a hybrid event, with some participants attending in Chongqing, China, and others online. The conference focuses on four main areas: fuzzy theory, algorithms and systems; fuzzy application; data mining; and the interdisciplinary field of fuzzy logic and data mining, and provides a forum for experts, researchers, academics and representatives from industry to share the latest advances in the field of fuzzy sets and data mining. This year, topics from two special sessions on granular-ball computing and the application of generative AI, as well as machine learning and neural networks, were also covered. A total of 363 submissions were received, and after careful review by the members of the international program committee, 110 papers were accepted for presentation at the conference and publication here, representing an acceptance rate of just over 30%. Covering a comprehensive range of current research and developments in fuzzy logic and data mining, the book will be of interest to all those working in the field of data science.

Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization PDF Author: Carlos Coello Coello
Publisher: Springer
ISBN: 3540318801
Category : Computers
Languages : en
Pages : 927

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005, held in Guanajuato, Mexico, in March 2005. The 59 revised full papers presented together with 2 invited papers and the summary of a tutorial were carefully reviewed and selected from the 115 papers submitted. The papers are organized in topical sections on algorithm improvements, incorporation of preferences, performance analysis and comparison, uncertainty and noise, alternative methods, and applications in a broad variety of fields.

Evolutionary Multi-objective Optimization in Uncertain Environments

Evolutionary Multi-objective Optimization in Uncertain Environments PDF Author: Chi-Keong Goh
Publisher: Springer
ISBN: 3540959769
Category : Computers
Languages : en
Pages : 273

Get Book Here

Book Description
Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined. The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.