Author: Le Baron O. Ferguson
Publisher: American Mathematical Soc.
ISBN: 0821815172
Category : Mathematics
Languages : en
Pages : 174
Book Description
Addresses two questions that include: 'What functions can be approximated by polynomials whose coefficients are integers?' and 'How well are they approximated (Jackson type theorems)?'
Approximation by Polynomials with Integral Coefficients
Author: Le Baron O. Ferguson
Publisher: American Mathematical Soc.
ISBN: 0821815172
Category : Mathematics
Languages : en
Pages : 174
Book Description
Addresses two questions that include: 'What functions can be approximated by polynomials whose coefficients are integers?' and 'How well are they approximated (Jackson type theorems)?'
Publisher: American Mathematical Soc.
ISBN: 0821815172
Category : Mathematics
Languages : en
Pages : 174
Book Description
Addresses two questions that include: 'What functions can be approximated by polynomials whose coefficients are integers?' and 'How well are they approximated (Jackson type theorems)?'
Polynomial Approximation of Differential Equations
Author: Daniele Funaro
Publisher: Springer Science & Business Media
ISBN: 3540467831
Category : Science
Languages : en
Pages : 315
Book Description
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.
Publisher: Springer Science & Business Media
ISBN: 3540467831
Category : Science
Languages : en
Pages : 315
Book Description
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.
Approximation Theory and Approximation Practice, Extended Edition
Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 1611975948
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Publisher: SIAM
ISBN: 1611975948
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Theory of Approximation of Functions of a Real Variable
Author: A. F. Timan
Publisher: Elsevier
ISBN: 1483184811
Category : Mathematics
Languages : en
Pages : 644
Book Description
Theory of Approximation of Functions of a Real Variable discusses a number of fundamental parts of the modern theory of approximation of functions of a real variable. The material is grouped around the problem of the connection between the best approximation of functions to their structural properties. This text is composed of eight chapters that highlight the relationship between the various structural properties of real functions and the character of possible approximations to them by polynomials and other functions of simple construction. Each chapter concludes with a section containing various problems and theorems, which supplement the main text. The first chapters tackle the Weierstrass's theorem, the best approximation by polynomials on a finite segment, and some compact classes of functions and their structural properties. The subsequent chapters describe some properties of algebraic polynomials and transcendental integral functions of exponential type, as well as the direct theorems of the constructive theory of functions. These topics are followed by discussions of differential and constructive characteristics of converse theorems. The final chapters explore other theorems connecting the best approximations functions with their structural properties. These chapters also deal with the linear processes of approximation of functions by polynomials. The book is intended for post-graduate students and for mathematical students taking advanced courses, as well as to workers in the field of the theory of functions.
Publisher: Elsevier
ISBN: 1483184811
Category : Mathematics
Languages : en
Pages : 644
Book Description
Theory of Approximation of Functions of a Real Variable discusses a number of fundamental parts of the modern theory of approximation of functions of a real variable. The material is grouped around the problem of the connection between the best approximation of functions to their structural properties. This text is composed of eight chapters that highlight the relationship between the various structural properties of real functions and the character of possible approximations to them by polynomials and other functions of simple construction. Each chapter concludes with a section containing various problems and theorems, which supplement the main text. The first chapters tackle the Weierstrass's theorem, the best approximation by polynomials on a finite segment, and some compact classes of functions and their structural properties. The subsequent chapters describe some properties of algebraic polynomials and transcendental integral functions of exponential type, as well as the direct theorems of the constructive theory of functions. These topics are followed by discussions of differential and constructive characteristics of converse theorems. The final chapters explore other theorems connecting the best approximations functions with their structural properties. These chapters also deal with the linear processes of approximation of functions by polynomials. The book is intended for post-graduate students and for mathematical students taking advanced courses, as well as to workers in the field of the theory of functions.
International Conference on Analytic Methods in Number Theory and Analysis, Moscow, 14-19 September 1981
Author:
Publisher: American Mathematical Soc.
ISBN: 9780821830901
Category : Mathematics
Languages : en
Pages : 340
Book Description
This collection consists of papers delivered at an international conference by the most eminent specialists in the domains of number theory, algebra, and analysis. The papers are devoted to actual problems in these domains of mathematics. In addition, short communications presented by participants in the conference are included.
Publisher: American Mathematical Soc.
ISBN: 9780821830901
Category : Mathematics
Languages : en
Pages : 340
Book Description
This collection consists of papers delivered at an international conference by the most eminent specialists in the domains of number theory, algebra, and analysis. The papers are devoted to actual problems in these domains of mathematics. In addition, short communications presented by participants in the conference are included.
Approximation of Functions
Author: G. G. Lorentz
Publisher: American Mathematical Society
ISBN: 1470474948
Category : Mathematics
Languages : en
Pages : 200
Book Description
This is an easily accessible account of the approximation of functions. It is simple and without unnecessary details, but complete enough to include the classical results of the theory. With only a few exceptions, only functions of one real variable are considered. A major theme is the degree of uniform approximation by linear sets of functions. This encompasses approximations by trigonometric polynomials, algebraic polynomials, rational functions, and polynomial operators. The chapter on approximation by operators does not assume extensive knowledge of functional analysis. Two chapters cover the important topics of widths and entropy. The last chapter covers the solution by Kolmogorov and Arnol?d of Hilbert's 13th problem. There are notes at the end of each chapter that give information about important topics not treated in the main text. Each chapter also has a short set of challenging problems, which serve as illustrations.
Publisher: American Mathematical Society
ISBN: 1470474948
Category : Mathematics
Languages : en
Pages : 200
Book Description
This is an easily accessible account of the approximation of functions. It is simple and without unnecessary details, but complete enough to include the classical results of the theory. With only a few exceptions, only functions of one real variable are considered. A major theme is the degree of uniform approximation by linear sets of functions. This encompasses approximations by trigonometric polynomials, algebraic polynomials, rational functions, and polynomial operators. The chapter on approximation by operators does not assume extensive knowledge of functional analysis. Two chapters cover the important topics of widths and entropy. The last chapter covers the solution by Kolmogorov and Arnol?d of Hilbert's 13th problem. There are notes at the end of each chapter that give information about important topics not treated in the main text. Each chapter also has a short set of challenging problems, which serve as illustrations.
An Introduction to the Approximation of Functions
Author: Theodore J. Rivlin
Publisher: Courier Corporation
ISBN: 9780486640693
Category : Mathematics
Languages : en
Pages : 164
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: Courier Corporation
ISBN: 9780486640693
Category : Mathematics
Languages : en
Pages : 164
Book Description
Mathematics of Computing -- Numerical Analysis.
Integer-valued Polynomials
Author: Paul-Jean Cahen
Publisher: American Mathematical Soc.
ISBN: 0821803883
Category : Mathematics
Languages : en
Pages : 345
Book Description
Integer-valued polynomials on the ring of integers have been known for a long time and have been used in calculus. Polya and Ostrowski generalized this notion to rings of integers of number fields. More generally still, one may consider a domain $D$ and the polynomials (with coefficients in its quotient field) mapping $D$ into itself. They form a $D$-algebra - that is, a $D$-module with a ring structure. Appearing in a very natural fashion, this ring possesses quite a rich structure, and the very numerous questions it raises allow a thorough exploration of commutative algebra. Here is the first book devoted entirely to this topic. This book features: thorough reviews of many published works; self-contained text with complete proofs; and numerous exercises.
Publisher: American Mathematical Soc.
ISBN: 0821803883
Category : Mathematics
Languages : en
Pages : 345
Book Description
Integer-valued polynomials on the ring of integers have been known for a long time and have been used in calculus. Polya and Ostrowski generalized this notion to rings of integers of number fields. More generally still, one may consider a domain $D$ and the polynomials (with coefficients in its quotient field) mapping $D$ into itself. They form a $D$-algebra - that is, a $D$-module with a ring structure. Appearing in a very natural fashion, this ring possesses quite a rich structure, and the very numerous questions it raises allow a thorough exploration of commutative algebra. Here is the first book devoted entirely to this topic. This book features: thorough reviews of many published works; self-contained text with complete proofs; and numerous exercises.
Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis
Author: Hugh L. Montgomery
Publisher: American Mathematical Soc.
ISBN: 1470424444
Category : Education
Languages : en
Pages : 242
Book Description
This book contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. This book would be an excellent resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in nu.
Publisher: American Mathematical Soc.
ISBN: 1470424444
Category : Education
Languages : en
Pages : 242
Book Description
This book contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. This book would be an excellent resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in nu.
Approximation Theory
Author: Alan Talbot
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 372
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 372
Book Description