Author: Emmanuil H Georgoulis
Publisher: Springer Science & Business Media
ISBN: 3642168760
Category : Mathematics
Languages : en
Pages : 310
Book Description
This book collects up-to-date papers from world experts in a broad variety of relevant applications of approximation theory, including dynamical systems, multiscale modelling of fluid flow, metrology, and geometric modelling to mention a few. The 14 papers in this volume document modern trends in approximation through recent theoretical developments, important computational aspects and multidisciplinary applications. The book is arranged in seven invited surveys, followed by seven contributed research papers. The surveys of the first seven chapters are addressing the following relevant topics: emergent behaviour in large electrical networks, algorithms for multivariate piecewise constant approximation, anisotropic triangulation methods in adaptive image approximation, form assessment in coordinate metrology, discontinuous Galerkin methods for linear problems, a numerical analyst's view of the lattice Boltzmann method, approximation of probability measures on manifolds. Moreover, the diverse contributed papers of the remaining seven chapters reflect recent developments in approximation theory, approximation practice and their applications. Graduate students who wish to discover the state of the art in a number of important directions of approximation algorithms will find this a valuable volume. Established researchers from statisticians through to fluid modellers will find interesting new approaches to solving familiar but challenging problems. This book grew out of the sixth in the conference series on "Algorithms for Approximation", which took place from 31st August to September 4th 2009 in Ambleside in the Lake District of the United Kingdom.
Approximation Algorithms for Complex Systems
Author: Emmanuil H Georgoulis
Publisher: Springer Science & Business Media
ISBN: 3642168760
Category : Mathematics
Languages : en
Pages : 310
Book Description
This book collects up-to-date papers from world experts in a broad variety of relevant applications of approximation theory, including dynamical systems, multiscale modelling of fluid flow, metrology, and geometric modelling to mention a few. The 14 papers in this volume document modern trends in approximation through recent theoretical developments, important computational aspects and multidisciplinary applications. The book is arranged in seven invited surveys, followed by seven contributed research papers. The surveys of the first seven chapters are addressing the following relevant topics: emergent behaviour in large electrical networks, algorithms for multivariate piecewise constant approximation, anisotropic triangulation methods in adaptive image approximation, form assessment in coordinate metrology, discontinuous Galerkin methods for linear problems, a numerical analyst's view of the lattice Boltzmann method, approximation of probability measures on manifolds. Moreover, the diverse contributed papers of the remaining seven chapters reflect recent developments in approximation theory, approximation practice and their applications. Graduate students who wish to discover the state of the art in a number of important directions of approximation algorithms will find this a valuable volume. Established researchers from statisticians through to fluid modellers will find interesting new approaches to solving familiar but challenging problems. This book grew out of the sixth in the conference series on "Algorithms for Approximation", which took place from 31st August to September 4th 2009 in Ambleside in the Lake District of the United Kingdom.
Publisher: Springer Science & Business Media
ISBN: 3642168760
Category : Mathematics
Languages : en
Pages : 310
Book Description
This book collects up-to-date papers from world experts in a broad variety of relevant applications of approximation theory, including dynamical systems, multiscale modelling of fluid flow, metrology, and geometric modelling to mention a few. The 14 papers in this volume document modern trends in approximation through recent theoretical developments, important computational aspects and multidisciplinary applications. The book is arranged in seven invited surveys, followed by seven contributed research papers. The surveys of the first seven chapters are addressing the following relevant topics: emergent behaviour in large electrical networks, algorithms for multivariate piecewise constant approximation, anisotropic triangulation methods in adaptive image approximation, form assessment in coordinate metrology, discontinuous Galerkin methods for linear problems, a numerical analyst's view of the lattice Boltzmann method, approximation of probability measures on manifolds. Moreover, the diverse contributed papers of the remaining seven chapters reflect recent developments in approximation theory, approximation practice and their applications. Graduate students who wish to discover the state of the art in a number of important directions of approximation algorithms will find this a valuable volume. Established researchers from statisticians through to fluid modellers will find interesting new approaches to solving familiar but challenging problems. This book grew out of the sixth in the conference series on "Algorithms for Approximation", which took place from 31st August to September 4th 2009 in Ambleside in the Lake District of the United Kingdom.
Approximation Algorithms
Author: Vijay V. Vazirani
Publisher: Springer Science & Business Media
ISBN: 3662045656
Category : Computers
Languages : en
Pages : 380
Book Description
Covering the basic techniques used in the latest research work, the author consolidates progress made so far, including some very recent and promising results, and conveys the beauty and excitement of work in the field. He gives clear, lucid explanations of key results and ideas, with intuitive proofs, and provides critical examples and numerous illustrations to help elucidate the algorithms. Many of the results presented have been simplified and new insights provided. Of interest to theoretical computer scientists, operations researchers, and discrete mathematicians.
Publisher: Springer Science & Business Media
ISBN: 3662045656
Category : Computers
Languages : en
Pages : 380
Book Description
Covering the basic techniques used in the latest research work, the author consolidates progress made so far, including some very recent and promising results, and conveys the beauty and excitement of work in the field. He gives clear, lucid explanations of key results and ideas, with intuitive proofs, and provides critical examples and numerous illustrations to help elucidate the algorithms. Many of the results presented have been simplified and new insights provided. Of interest to theoretical computer scientists, operations researchers, and discrete mathematicians.
Optimization of Complex Systems: Theory, Models, Algorithms and Applications
Author: Hoai An Le Thi
Publisher: Springer
ISBN: 3030218031
Category : Technology & Engineering
Languages : en
Pages : 1164
Book Description
This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.
Publisher: Springer
ISBN: 3030218031
Category : Technology & Engineering
Languages : en
Pages : 1164
Book Description
This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.
Model Reduction and Approximation
Author: Peter Benner
Publisher: SIAM
ISBN: 161197481X
Category : Science
Languages : en
Pages : 421
Book Description
Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.
Publisher: SIAM
ISBN: 161197481X
Category : Science
Languages : en
Pages : 421
Book Description
Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.
Viability and Resilience of Complex Systems
Author: Guillaume Deffuant
Publisher: Springer
ISBN: 3642204236
Category : Social Science
Languages : en
Pages : 227
Book Description
One common characteristics of a complex system is its ability to withstand major disturbances and the capacity to rebuild itself. Understanding how such systems demonstrate resilience by absorbing or recovering from major external perturbations requires both quantitative foundations and a multidisciplinary view on the topic. This book demonstrates how new methods can be used to identify the actions favouring the recovery from perturbations. Examples discussed include bacterial biofilms resisting detachment, grassland savannahs recovering from fire, the dynamics of language competition and Internet social networking sites overcoming vandalism. The reader is taken through an introduction to the idea of resilience and viability and shown the mathematical basis of the techniques used to analyse systems. The idea of individual or agent-based modelling of complex systems is introduced and related to analytically tractable approximations of such models. A set of case studies illustrates the use of the techniques in real applications, and the final section describes how one can use new and elaborate software tools for carrying out the necessary calculations. The book is intended for a general scientific audience of readers from the natural and social sciences, yet requires some mathematics to gain a full understanding of the more theoretical chapters. It is an essential point of reference for those interested in the practical application of the concepts of resilience and viability
Publisher: Springer
ISBN: 3642204236
Category : Social Science
Languages : en
Pages : 227
Book Description
One common characteristics of a complex system is its ability to withstand major disturbances and the capacity to rebuild itself. Understanding how such systems demonstrate resilience by absorbing or recovering from major external perturbations requires both quantitative foundations and a multidisciplinary view on the topic. This book demonstrates how new methods can be used to identify the actions favouring the recovery from perturbations. Examples discussed include bacterial biofilms resisting detachment, grassland savannahs recovering from fire, the dynamics of language competition and Internet social networking sites overcoming vandalism. The reader is taken through an introduction to the idea of resilience and viability and shown the mathematical basis of the techniques used to analyse systems. The idea of individual or agent-based modelling of complex systems is introduced and related to analytically tractable approximations of such models. A set of case studies illustrates the use of the techniques in real applications, and the final section describes how one can use new and elaborate software tools for carrying out the necessary calculations. The book is intended for a general scientific audience of readers from the natural and social sciences, yet requires some mathematics to gain a full understanding of the more theoretical chapters. It is an essential point of reference for those interested in the practical application of the concepts of resilience and viability
Inductive Learning Algorithms for Complex Systems Modeling
Author: H.R. Madala
Publisher: CRC Press
ISBN: 1351081942
Category : Computers
Languages : en
Pages : 381
Book Description
Discusses algorithm development, structure, and behavior Presents comprehensive coverage of algorithms useful for complex systems modeling Includes recent studies on clusterization and recognition problems Provides listings of algorithms in FORTRAN that can be run directly on IBM-compatible PCs
Publisher: CRC Press
ISBN: 1351081942
Category : Computers
Languages : en
Pages : 381
Book Description
Discusses algorithm development, structure, and behavior Presents comprehensive coverage of algorithms useful for complex systems modeling Includes recent studies on clusterization and recognition problems Provides listings of algorithms in FORTRAN that can be run directly on IBM-compatible PCs
The Design of Approximation Algorithms
Author: David P. Williamson
Publisher: Cambridge University Press
ISBN: 9780521195270
Category : Computers
Languages : en
Pages : 518
Book Description
Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.
Publisher: Cambridge University Press
ISBN: 9780521195270
Category : Computers
Languages : en
Pages : 518
Book Description
Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.
Computational Complexity
Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609
Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609
Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Approximation Algorithms and Semidefinite Programming
Author: Bernd Gärtner
Publisher: Springer Science & Business Media
ISBN: 3642220150
Category : Mathematics
Languages : en
Pages : 253
Book Description
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Publisher: Springer Science & Business Media
ISBN: 3642220150
Category : Mathematics
Languages : en
Pages : 253
Book Description
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Handbook of Approximation Algorithms and Metaheuristics
Author: Teofilo F. Gonzalez
Publisher: CRC Press
ISBN: 1351236415
Category : Computers
Languages : en
Pages : 817
Book Description
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.
Publisher: CRC Press
ISBN: 1351236415
Category : Computers
Languages : en
Pages : 817
Book Description
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.