Author: Bilal M. Ayyub
Publisher: Springer Science & Business Media
ISBN: 0387235507
Category : Business & Economics
Languages : en
Pages : 547
Book Description
The application areas of uncertainty are numerous and diverse, including all fields of engineering, computer science, systems control and finance. Determining appropriate ways and methods of dealing with uncertainty has been a constant challenge. The theme for this book is better understanding and the application of uncertainty theories. This book, with invited chapters, deals with the uncertainty phenomena in diverse fields. The book is an outgrowth of the Fourth International Symposium on Uncertainty Modeling and Analysis (ISUMA), which was held at the center of Adult Education, College Park, Maryland, in September 2003. All of the chapters have been carefully edited, following a review process in which the editorial committee scrutinized each chapter. The contents of the book are reported in twenty-three chapters, covering more than . . ... pages. This book is divided into six main sections. Part I (Chapters 1-4) presents the philosophical and theoretical foundation of uncertainty, new computational directions in neural networks, and some theoretical foundation of fuzzy systems. Part I1 (Chapters 5-8) reports on biomedical and chemical engineering applications. The sections looks at noise reduction techniques using hidden Markov models, evaluation of biomedical signals using neural networks, and changes in medical image detection using Markov Random Field and Mean Field theory. One of the chapters reports on optimization in chemical engineering processes.
Applied Research in Uncertainty Modeling and Analysis
Author: Bilal M. Ayyub
Publisher: Springer Science & Business Media
ISBN: 0387235507
Category : Business & Economics
Languages : en
Pages : 547
Book Description
The application areas of uncertainty are numerous and diverse, including all fields of engineering, computer science, systems control and finance. Determining appropriate ways and methods of dealing with uncertainty has been a constant challenge. The theme for this book is better understanding and the application of uncertainty theories. This book, with invited chapters, deals with the uncertainty phenomena in diverse fields. The book is an outgrowth of the Fourth International Symposium on Uncertainty Modeling and Analysis (ISUMA), which was held at the center of Adult Education, College Park, Maryland, in September 2003. All of the chapters have been carefully edited, following a review process in which the editorial committee scrutinized each chapter. The contents of the book are reported in twenty-three chapters, covering more than . . ... pages. This book is divided into six main sections. Part I (Chapters 1-4) presents the philosophical and theoretical foundation of uncertainty, new computational directions in neural networks, and some theoretical foundation of fuzzy systems. Part I1 (Chapters 5-8) reports on biomedical and chemical engineering applications. The sections looks at noise reduction techniques using hidden Markov models, evaluation of biomedical signals using neural networks, and changes in medical image detection using Markov Random Field and Mean Field theory. One of the chapters reports on optimization in chemical engineering processes.
Publisher: Springer Science & Business Media
ISBN: 0387235507
Category : Business & Economics
Languages : en
Pages : 547
Book Description
The application areas of uncertainty are numerous and diverse, including all fields of engineering, computer science, systems control and finance. Determining appropriate ways and methods of dealing with uncertainty has been a constant challenge. The theme for this book is better understanding and the application of uncertainty theories. This book, with invited chapters, deals with the uncertainty phenomena in diverse fields. The book is an outgrowth of the Fourth International Symposium on Uncertainty Modeling and Analysis (ISUMA), which was held at the center of Adult Education, College Park, Maryland, in September 2003. All of the chapters have been carefully edited, following a review process in which the editorial committee scrutinized each chapter. The contents of the book are reported in twenty-three chapters, covering more than . . ... pages. This book is divided into six main sections. Part I (Chapters 1-4) presents the philosophical and theoretical foundation of uncertainty, new computational directions in neural networks, and some theoretical foundation of fuzzy systems. Part I1 (Chapters 5-8) reports on biomedical and chemical engineering applications. The sections looks at noise reduction techniques using hidden Markov models, evaluation of biomedical signals using neural networks, and changes in medical image detection using Markov Random Field and Mean Field theory. One of the chapters reports on optimization in chemical engineering processes.
Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach
Author: Bilal Ayyub
Publisher: Springer Science & Business Media
ISBN: 9780792380306
Category : Computers
Languages : en
Pages : 414
Book Description
Uncertainty has been of concern to engineers, managers and . scientists for many centuries. In management sciences there have existed definitions of uncertainty in a rather narrow sense since the beginning of this century. In engineering and uncertainty has for a long time been considered as in sciences, however, synonymous with random, stochastic, statistic, or probabilistic. Only since the early sixties views on uncertainty have ~ecome more heterogeneous and more tools to model uncertainty than statistics have been proposed by several scientists. The problem of modeling uncertainty adequately has become more important the more complex systems have become, the faster the scientific and engineering world develops, and the more important, but also more difficult, forecasting of future states of systems have become. The first question one should probably ask is whether uncertainty is a phenomenon, a feature of real world systems, a state of mind or a label for a situation in which a human being wants to make statements about phenomena, i. e. , reality, models, and theories, respectively. One cart also ask whether uncertainty is an objective fact or just a subjective impression which is closely related to individual persons. Whether uncertainty is an objective feature of physical real systems seems to be a philosophical question. This shall not be answered in this volume.
Publisher: Springer Science & Business Media
ISBN: 9780792380306
Category : Computers
Languages : en
Pages : 414
Book Description
Uncertainty has been of concern to engineers, managers and . scientists for many centuries. In management sciences there have existed definitions of uncertainty in a rather narrow sense since the beginning of this century. In engineering and uncertainty has for a long time been considered as in sciences, however, synonymous with random, stochastic, statistic, or probabilistic. Only since the early sixties views on uncertainty have ~ecome more heterogeneous and more tools to model uncertainty than statistics have been proposed by several scientists. The problem of modeling uncertainty adequately has become more important the more complex systems have become, the faster the scientific and engineering world develops, and the more important, but also more difficult, forecasting of future states of systems have become. The first question one should probably ask is whether uncertainty is a phenomenon, a feature of real world systems, a state of mind or a label for a situation in which a human being wants to make statements about phenomena, i. e. , reality, models, and theories, respectively. One cart also ask whether uncertainty is an objective fact or just a subjective impression which is closely related to individual persons. Whether uncertainty is an objective feature of physical real systems seems to be a philosophical question. This shall not be answered in this volume.
Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems
Author: Chakraverty, S.
Publisher: IGI Global
ISBN: 1466649925
Category : Mathematics
Languages : en
Pages : 442
Book Description
"This book provides the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications"--Provided by publisher.
Publisher: IGI Global
ISBN: 1466649925
Category : Mathematics
Languages : en
Pages : 442
Book Description
"This book provides the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications"--Provided by publisher.
Uncertainty Modeling and Analysis in Civil Engineering
Author: Bilal M. Ayyub
Publisher: CRC Press
ISBN: 9780849331084
Category : Technology & Engineering
Languages : en
Pages : 534
Book Description
With the expansion of new technologies, materials, and the design of complex systems, the expectations of society upon engineers are becoming larger than ever. Engineers make critical decisions with potentially high adverse consequences. The current political, societal, and financial climate requires engineers to formally consider the factors of uncertainty (e.g., floods, earthquakes, winds, environmental risks) in their decisions at all levels. Uncertainty Modeling and Analysis in Civil Engineering provides a thorough report on the immediate state of uncertainty modeling and analytical methods for civil engineering systems, presenting a toolbox for solving problems in real-world situations. Topics include Neural networks Genetic algorithms Numerical modeling Fuzzy sets and operations Reliability and risk analysis Systems control Uncertainty in probability estimates This compendium is a considerable reference for civil engineers as well as for engineers in other disciplines, computer scientists, general scientists, and students.
Publisher: CRC Press
ISBN: 9780849331084
Category : Technology & Engineering
Languages : en
Pages : 534
Book Description
With the expansion of new technologies, materials, and the design of complex systems, the expectations of society upon engineers are becoming larger than ever. Engineers make critical decisions with potentially high adverse consequences. The current political, societal, and financial climate requires engineers to formally consider the factors of uncertainty (e.g., floods, earthquakes, winds, environmental risks) in their decisions at all levels. Uncertainty Modeling and Analysis in Civil Engineering provides a thorough report on the immediate state of uncertainty modeling and analytical methods for civil engineering systems, presenting a toolbox for solving problems in real-world situations. Topics include Neural networks Genetic algorithms Numerical modeling Fuzzy sets and operations Reliability and risk analysis Systems control Uncertainty in probability estimates This compendium is a considerable reference for civil engineers as well as for engineers in other disciplines, computer scientists, general scientists, and students.
Uncertainty Modelling in Data Science
Author: Sébastien Destercke
Publisher: Springer
ISBN: 3319975471
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17–21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair. Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs. The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them. Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.
Publisher: Springer
ISBN: 3319975471
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17–21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair. Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs. The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them. Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.
Natural Hazard Uncertainty Assessment
Author: Karin Riley
Publisher: John Wiley & Sons
ISBN: 1119027861
Category : Science
Languages : en
Pages : 356
Book Description
Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncertainties to inform modeling efforts. In this monograph we provide a broad, cross-disciplinary overview of issues relating to uncertainties faced in natural hazard and risk assessment. We introduce some basic tenets of uncertainty analysis, discuss issues related to communication and decision support, and offer numerous examples of analyses and modeling approaches that vary by context and scope. Contributors include scientists from across the full breath of the natural hazard scientific community, from those in real-time analysis of natural hazards to those in the research community from academia and government. Key themes and highlights include: Substantial breadth and depth of analysis in terms of the types of natural hazards addressed, the disciplinary perspectives represented, and the number of studies included Targeted, application-centered analyses with a focus on development and use of modeling techniques to address various sources of uncertainty Emphasis on the impacts of climate change on natural hazard processes and outcomes Recommendations for cross-disciplinary and science transfer across natural hazard sciences This volume will be an excellent resource for those interested in the current work on uncertainty classification/quantification and will document common and emergent research themes to allow all to learn from each other and build a more connected but still diverse and ever growing community of scientists. Read an interview with the editors to find out more: https://eos.org/editors-vox/reducing-uncertainty-in-hazard-prediction
Publisher: John Wiley & Sons
ISBN: 1119027861
Category : Science
Languages : en
Pages : 356
Book Description
Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncertainties to inform modeling efforts. In this monograph we provide a broad, cross-disciplinary overview of issues relating to uncertainties faced in natural hazard and risk assessment. We introduce some basic tenets of uncertainty analysis, discuss issues related to communication and decision support, and offer numerous examples of analyses and modeling approaches that vary by context and scope. Contributors include scientists from across the full breath of the natural hazard scientific community, from those in real-time analysis of natural hazards to those in the research community from academia and government. Key themes and highlights include: Substantial breadth and depth of analysis in terms of the types of natural hazards addressed, the disciplinary perspectives represented, and the number of studies included Targeted, application-centered analyses with a focus on development and use of modeling techniques to address various sources of uncertainty Emphasis on the impacts of climate change on natural hazard processes and outcomes Recommendations for cross-disciplinary and science transfer across natural hazard sciences This volume will be an excellent resource for those interested in the current work on uncertainty classification/quantification and will document common and emergent research themes to allow all to learn from each other and build a more connected but still diverse and ever growing community of scientists. Read an interview with the editors to find out more: https://eos.org/editors-vox/reducing-uncertainty-in-hazard-prediction
Uncertainty Modeling in Finite Element, Fatigue and Stability of Systems
Author: Achintya Haldar
Publisher: World Scientific
ISBN: 9810231288
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
The functionality of modern structural, mechanical and electrical or electronic systems depends on their ability to perform under uncertain conditions. Consideration of uncertainties and their effect on system behavior is an essential and integral part of defining systems. In eleven chapters, leading experts present an overview of the current state of uncertainty modeling, analysis and design of large systems in four major areas: finite and boundary element methods (common structural analysis techniques), fatigue, stability analysis, and fault-tolerant systems. The content of this book is unique; it describes exciting research developments and challenges in emerging areas, and provide a sophisticated toolbox for tackling uncertainty modeling in real systems.
Publisher: World Scientific
ISBN: 9810231288
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
The functionality of modern structural, mechanical and electrical or electronic systems depends on their ability to perform under uncertain conditions. Consideration of uncertainties and their effect on system behavior is an essential and integral part of defining systems. In eleven chapters, leading experts present an overview of the current state of uncertainty modeling, analysis and design of large systems in four major areas: finite and boundary element methods (common structural analysis techniques), fatigue, stability analysis, and fault-tolerant systems. The content of this book is unique; it describes exciting research developments and challenges in emerging areas, and provide a sophisticated toolbox for tackling uncertainty modeling in real systems.
Scaling and Uncertainty Analysis in Ecology
Author: Jianguo Wu
Publisher: Springer Science & Business Media
ISBN: 1402046634
Category : Science
Languages : en
Pages : 354
Book Description
This is the first book of its kind – explicitly considering uncertainty and error analysis as an integral part of scaling. The book draws together a series of important case studies to provide a comprehensive review and synthesis of the most recent concepts, theories and methods in scaling and uncertainty analysis. It includes case studies illustrating how scaling and uncertainty analysis are being conducted in ecology and environmental science.
Publisher: Springer Science & Business Media
ISBN: 1402046634
Category : Science
Languages : en
Pages : 354
Book Description
This is the first book of its kind – explicitly considering uncertainty and error analysis as an integral part of scaling. The book draws together a series of important case studies to provide a comprehensive review and synthesis of the most recent concepts, theories and methods in scaling and uncertainty analysis. It includes case studies illustrating how scaling and uncertainty analysis are being conducted in ecology and environmental science.
Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural Systems
Author: Bilal M. Ayyub
Publisher: World Scientific
ISBN: 9810231342
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.
Publisher: World Scientific
ISBN: 9810231342
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.
Applied Uncertainty Analysis For Flood Risk Management
Author: Keith J Beven
Publisher: World Scientific
ISBN: 1783263121
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
This volume provides an introduction for flood risk management practitioners, up-to-date methods for analysis of uncertainty and its use in risk-based decision making. It addresses decision making for both short-term (real-time forecasting) and long-term (flood risk planning under change) situations. It aims primarily at technical practitioners involved in flood risk analysis and flood warning, including hydrologists, engineers, flood modelers, risk analysts and those involved in the design and operation of flood warning systems. Many experienced practitioners are now expected to modify their way of working to fit into the new philosophy of flood risk management. This volume helps them to undertake that task with appropriate attention to the surrounding uncertainties. The book will also interest and benefit researchers and graduate students hoping to improve their knowledge of modern uncertainty analysis.
Publisher: World Scientific
ISBN: 1783263121
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
This volume provides an introduction for flood risk management practitioners, up-to-date methods for analysis of uncertainty and its use in risk-based decision making. It addresses decision making for both short-term (real-time forecasting) and long-term (flood risk planning under change) situations. It aims primarily at technical practitioners involved in flood risk analysis and flood warning, including hydrologists, engineers, flood modelers, risk analysts and those involved in the design and operation of flood warning systems. Many experienced practitioners are now expected to modify their way of working to fit into the new philosophy of flood risk management. This volume helps them to undertake that task with appropriate attention to the surrounding uncertainties. The book will also interest and benefit researchers and graduate students hoping to improve their knowledge of modern uncertainty analysis.