Applied Machine Learning

Applied Machine Learning PDF Author: David Forsyth
Publisher: Springer
ISBN: 3030181146
Category : Computers
Languages : en
Pages : 496

Get Book Here

Book Description
Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas. This book is written for people who want to adopt and use the main tools of machine learning, but aren’t necessarily going to want to be machine learning researchers. Intended for students in final year undergraduate or first year graduate computer science programs in machine learning, this textbook is a machine learning toolkit. Applied Machine Learning covers many topics for people who want to use machine learning processes to get things done, with a strong emphasis on using existing tools and packages, rather than writing one’s own code. A companion to the author's Probability and Statistics for Computer Science, this book picks up where the earlier book left off (but also supplies a summary of probability that the reader can use). Emphasizing the usefulness of standard machinery from applied statistics, this textbook gives an overview of the major applied areas in learning, including coverage of:• classification using standard machinery (naive bayes; nearest neighbor; SVM)• clustering and vector quantization (largely as in PSCS)• PCA (largely as in PSCS)• variants of PCA (NIPALS; latent semantic analysis; canonical correlation analysis)• linear regression (largely as in PSCS)• generalized linear models including logistic regression• model selection with Lasso, elasticnet• robustness and m-estimators• Markov chains and HMM’s (largely as in PSCS)• EM in fairly gory detail; long experience teaching this suggests one detailed example is required, which students hate; but once they’ve been through that, the next one is easy• simple graphical models (in the variational inference section)• classification with neural networks, with a particular emphasis onimage classification• autoencoding with neural networks• structure learning

Applied Machine Learning

Applied Machine Learning PDF Author: M. Gopal
Publisher: McGraw-Hill Education
ISBN: 9781260456844
Category : Technology & Engineering
Languages : en
Pages : 656

Get Book Here

Book Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Cutting-edge machine learning principles, practices, and applications This comprehensive textbook explores the theoretical under¬pinnings of learning and equips readers with the knowledge needed to apply powerful machine learning techniques to solve challenging real-world problems. Applied Machine Learning shows, step by step, how to conceptualize problems, accurately represent data, select and tune algorithms, interpret and analyze results, and make informed strategic decisions. Presented in a non-rigorous mathematical style, the book covers a broad array of machine learning topics with special emphasis on methods that have been profitably employed. Coverage includes: •Supervised learning•Statistical learning•Learning with support vector machines (SVM)•Learning with neural networks (NN)•Fuzzy inference systems•Data clustering•Data transformations•Decision tree learning•Business intelligence•Data mining•And much more

Applied Machine Learning

Applied Machine Learning PDF Author: David Forsyth
Publisher: Springer
ISBN: 3030181146
Category : Computers
Languages : en
Pages : 496

Get Book Here

Book Description
Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas. This book is written for people who want to adopt and use the main tools of machine learning, but aren’t necessarily going to want to be machine learning researchers. Intended for students in final year undergraduate or first year graduate computer science programs in machine learning, this textbook is a machine learning toolkit. Applied Machine Learning covers many topics for people who want to use machine learning processes to get things done, with a strong emphasis on using existing tools and packages, rather than writing one’s own code. A companion to the author's Probability and Statistics for Computer Science, this book picks up where the earlier book left off (but also supplies a summary of probability that the reader can use). Emphasizing the usefulness of standard machinery from applied statistics, this textbook gives an overview of the major applied areas in learning, including coverage of:• classification using standard machinery (naive bayes; nearest neighbor; SVM)• clustering and vector quantization (largely as in PSCS)• PCA (largely as in PSCS)• variants of PCA (NIPALS; latent semantic analysis; canonical correlation analysis)• linear regression (largely as in PSCS)• generalized linear models including logistic regression• model selection with Lasso, elasticnet• robustness and m-estimators• Markov chains and HMM’s (largely as in PSCS)• EM in fairly gory detail; long experience teaching this suggests one detailed example is required, which students hate; but once they’ve been through that, the next one is easy• simple graphical models (in the variational inference section)• classification with neural networks, with a particular emphasis onimage classification• autoencoding with neural networks• structure learning

Applied Machine Learning with Python

Applied Machine Learning with Python PDF Author: Andrea Giussani
Publisher:
ISBN: 9788899902827
Category : Computers
Languages : en
Pages : 182

Get Book Here

Book Description


Hands-On Unsupervised Learning Using Python

Hands-On Unsupervised Learning Using Python PDF Author: Ankur A. Patel
Publisher: "O'Reilly Media, Inc."
ISBN: 1492035599
Category : Computers
Languages : en
Pages : 310

Get Book Here

Book Description
Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks

Applied Predictive Modeling

Applied Predictive Modeling PDF Author: Max Kuhn
Publisher: Springer Science & Business Media
ISBN: 1461468493
Category : Medical
Languages : en
Pages : 595

Get Book Here

Book Description
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

TinyML

TinyML PDF Author: Pete Warden
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504

Get Book Here

Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch PDF Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624

Get Book Here

Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Applied Reinforcement Learning with Python

Applied Reinforcement Learning with Python PDF Author: Taweh Beysolow II
Publisher: Apress
ISBN: 148425127X
Category : Computers
Languages : en
Pages : 177

Get Book Here

Book Description
Delve into the world of reinforcement learning algorithms and apply them to different use-cases via Python. This book covers important topics such as policy gradients and Q learning, and utilizes frameworks such as Tensorflow, Keras, and OpenAI Gym. Applied Reinforcement Learning with Python introduces you to the theory behind reinforcement learning (RL) algorithms and the code that will be used to implement them. You will take a guided tour through features of OpenAI Gym, from utilizing standard libraries to creating your own environments, then discover how to frame reinforcement learning problems so you can research, develop, and deploy RL-based solutions. What You'll Learn Implement reinforcement learning with Python Work with AI frameworks such as OpenAI Gym, Tensorflow, and KerasDeploy and train reinforcement learning–based solutions via cloud resourcesApply practical applications of reinforcement learning Who This Book Is For Data scientists, machine learning engineers and software engineers familiar with machine learning and deep learning concepts.

Applied Machine Learning Explainability Techniques

Applied Machine Learning Explainability Techniques PDF Author: Aditya Bhattacharya
Publisher: Packt Publishing Ltd
ISBN: 1803234164
Category : Computers
Languages : en
Pages : 306

Get Book Here

Book Description
Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems Key Features • Explore various explainability methods for designing robust and scalable explainable ML systems • Use XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problems • Design user-centric explainable ML systems using guidelines provided for industrial applications Book Description Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases. Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users. By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered. What you will learn • Explore various explanation methods and their evaluation criteria • Learn model explanation methods for structured and unstructured data • Apply data-centric XAI for practical problem-solving • Hands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and others • Discover industrial best practices for explainable ML systems • Use user-centric XAI to bring AI closer to non-technical end users • Address open challenges in XAI using the recommended guidelines Who this book is for This book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.

Applied Machine Learning Solutions with Python

Applied Machine Learning Solutions with Python PDF Author: Siddhanta Bhatta
Publisher: BPB Publications
ISBN: 9391030432
Category : Computers
Languages : en
Pages : 418

Get Book Here

Book Description
A problem-focused guide for tackling industrial machine learning issues with methods and frameworks chosen by experts. KEY FEATURES ● Popular techniques for problem formulation, data collection, and data cleaning in machine learning. ● Comprehensive and useful machine learning tools such as MLFlow, Streamlit, and many more. ● Covers numerous machine learning libraries, including Tensorflow, FastAI, Scikit-Learn, Pandas, and Numpy. DESCRIPTION This book discusses how to apply machine learning to real-world problems by utilizing real-world data. In this book, you will investigate data sources, become acquainted with data pipelines, and practice how machine learning works through numerous examples and case studies. The book begins with high-level concepts and implementation (with code!) and progresses towards the real-world of ML systems. It briefly discusses various concepts of Statistics and Linear Algebra. You will learn how to formulate a problem, collect data, build a model, and tune it. You will learn about use cases for data analytics, computer vision, and natural language processing. You will also explore nonlinear architecture, thus enabling you to build models with multiple inputs and outputs. You will get trained on creating a machine learning profile, various machine learning libraries, Statistics, and FAST API. Throughout the book, you will use Python to experiment with machine learning libraries such as Tensorflow, Scikit-learn, Spacy, and FastAI. The book will help train our models on both Kaggle and our datasets. WHAT YOU WILL LEARN ● Construct a machine learning problem, evaluate the feasibility, and gather and clean data. ● Learn to explore data first, select, and train machine learning models. ● Fine-tune the chosen model, deploy, and monitor it in production. ● Discover popular models for data analytics, computer vision, and Natural Language Processing. ● Create a machine learning profile and contribute to the community. WHO THIS BOOK IS FOR This book caters to beginners in machine learning, software engineers, and students who want to gain a good understanding of machine learning concepts and create production-ready ML systems. This book assumes you have a beginner-level understanding of Python. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Problem Formulation in Machine Learning 3. Data Acquisition and Cleaning 4. Exploratory Data Analysis 5. Model Building and Tuning 6. Taking Our Model into Production 7. Data Analytics Use Case 8. Building a Custom Image Classifier from Scratch 9. Building a News Summarization App Using Transformers 10. Multiple Inputs and Multiple Output Models 11. Contributing to the Community 12. Creating Your Project 13. Crash Course in Numpy, Matplotlib, and Pandas 14. Crash Course in Linear Algebra and Statistics 15. Crash Course in FastAPI