Author: Leonardo Azevedo Scardua
Publisher: CRC Press
ISBN: 1000349802
Category : Computers
Languages : en
Pages : 255
Book Description
Applied Evolutionary Algorithms for Engineers with Python is written for students, scientists and engineers who need to apply evolutionary algorithms to practical optimization problems. The presentation of the theoretical background is complemented with didactical Python implementations of evolutionary algorithms that researchers have recently applied to complex optimization problems. Cases of successful application of evolutionary algorithms to real-world like optimization problems are presented, together with source code that allows the reader to gain insight into the idiosyncrasies of the practical application of evolutionary algorithms. Key Features Includes detailed descriptions of evolutionary algorithm paradigms Provides didactic implementations of the algorithms in Python, a programming language that has been widely adopted by the AI community Discusses the application of evolutionary algorithms to real-world optimization problems Presents successful cases of the application of evolutionary algorithms to complex optimization problems, with auxiliary source code.
Applied Evolutionary Algorithms for Engineers using Python
Author: Leonardo Azevedo Scardua
Publisher: CRC Press
ISBN: 1000349802
Category : Computers
Languages : en
Pages : 255
Book Description
Applied Evolutionary Algorithms for Engineers with Python is written for students, scientists and engineers who need to apply evolutionary algorithms to practical optimization problems. The presentation of the theoretical background is complemented with didactical Python implementations of evolutionary algorithms that researchers have recently applied to complex optimization problems. Cases of successful application of evolutionary algorithms to real-world like optimization problems are presented, together with source code that allows the reader to gain insight into the idiosyncrasies of the practical application of evolutionary algorithms. Key Features Includes detailed descriptions of evolutionary algorithm paradigms Provides didactic implementations of the algorithms in Python, a programming language that has been widely adopted by the AI community Discusses the application of evolutionary algorithms to real-world optimization problems Presents successful cases of the application of evolutionary algorithms to complex optimization problems, with auxiliary source code.
Publisher: CRC Press
ISBN: 1000349802
Category : Computers
Languages : en
Pages : 255
Book Description
Applied Evolutionary Algorithms for Engineers with Python is written for students, scientists and engineers who need to apply evolutionary algorithms to practical optimization problems. The presentation of the theoretical background is complemented with didactical Python implementations of evolutionary algorithms that researchers have recently applied to complex optimization problems. Cases of successful application of evolutionary algorithms to real-world like optimization problems are presented, together with source code that allows the reader to gain insight into the idiosyncrasies of the practical application of evolutionary algorithms. Key Features Includes detailed descriptions of evolutionary algorithm paradigms Provides didactic implementations of the algorithms in Python, a programming language that has been widely adopted by the AI community Discusses the application of evolutionary algorithms to real-world optimization problems Presents successful cases of the application of evolutionary algorithms to complex optimization problems, with auxiliary source code.
Introduction to Optimum Design
Author: Jasbir Singh Arora
Publisher: Elsevier
ISBN: 0128183217
Category : Technology & Engineering
Languages : en
Pages : 1121
Book Description
Introduction to Optimum Design, Fifth Edition is the most widely used textbook in engineering optimization and optimum design courses. It is intended for use in a first course on engineering design and optimization at the undergraduate or graduate level within engineering departments of all disciplines, but primarily within mechanical, aerospace and civil engineering. The basic approach of the text presents an organized approach to engineering design optimization in a rigorous yet simplified manner, illustrating various concepts and procedures with simple examples and demonstrating their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB are featured as learning and teaching aids. This new edition has been enhanced with new or expanded content in such areas as reliability-based optimization, metamodeling, design of experiments, robust design, nature-inspired metaheuristic search methods, and combinatorial optimizaton. - Describes basic concepts of optimality conditions and numerical methods with simple and practical examples, making the material highly teachable and learnable - Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Covers practical design examples and introduces students to the use of optimization methods - Serves the needs of instructors who teach more advanced courses - Features new or expanded contents in such areas as design under uncertainty - reliability-based design optimization, metamodeling - response surface method, design of experiments, nature-inspired metaheuristic search methods, and robust design
Publisher: Elsevier
ISBN: 0128183217
Category : Technology & Engineering
Languages : en
Pages : 1121
Book Description
Introduction to Optimum Design, Fifth Edition is the most widely used textbook in engineering optimization and optimum design courses. It is intended for use in a first course on engineering design and optimization at the undergraduate or graduate level within engineering departments of all disciplines, but primarily within mechanical, aerospace and civil engineering. The basic approach of the text presents an organized approach to engineering design optimization in a rigorous yet simplified manner, illustrating various concepts and procedures with simple examples and demonstrating their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB are featured as learning and teaching aids. This new edition has been enhanced with new or expanded content in such areas as reliability-based optimization, metamodeling, design of experiments, robust design, nature-inspired metaheuristic search methods, and combinatorial optimizaton. - Describes basic concepts of optimality conditions and numerical methods with simple and practical examples, making the material highly teachable and learnable - Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Covers practical design examples and introduces students to the use of optimization methods - Serves the needs of instructors who teach more advanced courses - Features new or expanded contents in such areas as design under uncertainty - reliability-based design optimization, metamodeling - response surface method, design of experiments, nature-inspired metaheuristic search methods, and robust design
Applications of Multi-objective Evolutionary Algorithms
Author: Carlos A. Coello Coello
Publisher: World Scientific
ISBN: 9812561064
Category : Computers
Languages : en
Pages : 792
Book Description
- Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains
Publisher: World Scientific
ISBN: 9812561064
Category : Computers
Languages : en
Pages : 792
Book Description
- Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains
Machine Learning Guide for Oil and Gas Using Python
Author: Hoss Belyadi
Publisher: Gulf Professional Publishing
ISBN: 0128219300
Category : Science
Languages : en
Pages : 478
Book Description
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. - Helps readers understand how open-source Python can be utilized in practical oil and gas challenges - Covers the most commonly used algorithms for both supervised and unsupervised learning - Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques
Publisher: Gulf Professional Publishing
ISBN: 0128219300
Category : Science
Languages : en
Pages : 478
Book Description
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. - Helps readers understand how open-source Python can be utilized in practical oil and gas challenges - Covers the most commonly used algorithms for both supervised and unsupervised learning - Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques
Handbook of Applied Algorithms
Author: Amiya Nayak
Publisher: John Wiley & Sons
ISBN: 9780470175644
Category : Computers
Languages : en
Pages : 560
Book Description
Discover the benefits of applying algorithms to solve scientific, engineering, and practical problems Providing a combination of theory, algorithms, and simulations, Handbook of Applied Algorithms presents an all-encompassing treatment of applying algorithms and discrete mathematics to practical problems in "hot" application areas, such as computational biology, computational chemistry, wireless networks, and computer vision. In eighteen self-contained chapters, this timely book explores: * Localized algorithms that can be used in topology control for wireless ad-hoc or sensor networks * Bioinformatics algorithms for analyzing data * Clustering algorithms and identification of association rules in data mining * Applications of combinatorial algorithms and graph theory in chemistry and molecular biology * Optimizing the frequency planning of a GSM network using evolutionary algorithms * Algorithmic solutions and advances achieved through game theory Complete with exercises for readers to measure their comprehension of the material presented, Handbook of Applied Algorithms is a much-needed resource for researchers, practitioners, and students within computer science, life science, and engineering. Amiya Nayak, PhD, has over seventeen years of industrial experience and is Full Professor at the School of Information Technology and Engineering at the University of Ottawa, Canada. He is on the editorial board of several journals. Dr. Nayak's research interests are in the areas of fault tolerance, distributed systems/algorithms, and mobile ad-hoc networks. Ivan StojmenoviC?, PhD, is Professor at the University of Ottawa, Canada (www.site.uottawa.ca/~ivan), and Chair Professor of Applied Computing at the University of Birmingham, United Kingdom. Dr. Stojmenovic? received the Royal Society Wolfson Research Merit Award. His current research interests are mostly in the design and analysis of algorithms for wireless ad-hoc and sensor networks.
Publisher: John Wiley & Sons
ISBN: 9780470175644
Category : Computers
Languages : en
Pages : 560
Book Description
Discover the benefits of applying algorithms to solve scientific, engineering, and practical problems Providing a combination of theory, algorithms, and simulations, Handbook of Applied Algorithms presents an all-encompassing treatment of applying algorithms and discrete mathematics to practical problems in "hot" application areas, such as computational biology, computational chemistry, wireless networks, and computer vision. In eighteen self-contained chapters, this timely book explores: * Localized algorithms that can be used in topology control for wireless ad-hoc or sensor networks * Bioinformatics algorithms for analyzing data * Clustering algorithms and identification of association rules in data mining * Applications of combinatorial algorithms and graph theory in chemistry and molecular biology * Optimizing the frequency planning of a GSM network using evolutionary algorithms * Algorithmic solutions and advances achieved through game theory Complete with exercises for readers to measure their comprehension of the material presented, Handbook of Applied Algorithms is a much-needed resource for researchers, practitioners, and students within computer science, life science, and engineering. Amiya Nayak, PhD, has over seventeen years of industrial experience and is Full Professor at the School of Information Technology and Engineering at the University of Ottawa, Canada. He is on the editorial board of several journals. Dr. Nayak's research interests are in the areas of fault tolerance, distributed systems/algorithms, and mobile ad-hoc networks. Ivan StojmenoviC?, PhD, is Professor at the University of Ottawa, Canada (www.site.uottawa.ca/~ivan), and Chair Professor of Applied Computing at the University of Birmingham, United Kingdom. Dr. Stojmenovic? received the Royal Society Wolfson Research Merit Award. His current research interests are mostly in the design and analysis of algorithms for wireless ad-hoc and sensor networks.
Data-Driven Evolutionary Modeling in Materials Technology
Author: Nirupam Chakraborti
Publisher: CRC Press
ISBN: 1000635864
Category : Technology & Engineering
Languages : en
Pages : 507
Book Description
Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.
Publisher: CRC Press
ISBN: 1000635864
Category : Technology & Engineering
Languages : en
Pages : 507
Book Description
Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.
Estimation of Distribution Algorithms
Author: Pedro LarraƱaga
Publisher: Springer Science & Business Media
ISBN: 9780792374664
Category : Computers
Languages : en
Pages : 424
Book Description
Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited. This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science. `... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.
Publisher: Springer Science & Business Media
ISBN: 9780792374664
Category : Computers
Languages : en
Pages : 424
Book Description
Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited. This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science. `... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.
Python for Scientists
Author: John M. Stewart
Publisher: Cambridge University Press
ISBN: 1316641236
Category : Computers
Languages : en
Pages : 272
Book Description
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Publisher: Cambridge University Press
ISBN: 1316641236
Category : Computers
Languages : en
Pages : 272
Book Description
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Machine Learning for Civil and Environmental Engineers
Author: M. Z. Naser
Publisher: John Wiley & Sons
ISBN: 1119897610
Category : Technology & Engineering
Languages : en
Pages : 610
Book Description
Accessible and practical framework for machine learning applications and solutions for civil and environmental engineers This textbook introduces engineers and engineering students to the applications of artificial intelligence (AI), machine learning (ML), and machine intelligence (MI) in relation to civil and environmental engineering projects and problems, presenting state-of-the-art methodologies and techniques to develop and implement algorithms in the engineering domain. Through real-world projects like analysis and design of structural members, optimizing concrete mixtures for site applications, examining concrete cracking via computer vision, evaluating the response of bridges to hazards, and predicating water quality and energy expenditure in buildings, this textbook offers readers in-depth case studies with solved problems that are commonly faced by civil and environmental engineers. The approaches presented range from simplified to advanced methods, incorporating coding-based and coding-free techniques. Professional engineers and engineering students will find value in the step-by-step examples that are accompanied by sample databases and codes for readers to practice with. Written by a highly qualified professional with significant experience in the field, Machine Learning includes valuable information on: The current state of machine learning and causality in civil and environmental engineering as viewed through a scientometrics analysis, plus a historical perspective Supervised vs. unsupervised learning for regression, classification, and clustering problems Explainable and causal methods for practical engineering problems Database development, outlining how an engineer can effectively collect and verify appropriate data to be used in machine intelligence analysis A framework for machine learning adoption and application, covering key questions commonly faced by practitioners This textbook is a must-have reference for undergraduate/graduate students to learn concepts on the use of machine learning, for scientists/researchers to learn how to integrate machine learning into civil and environmental engineering, and for design/engineering professionals as a reference guide for undertaking MI design, simulation, and optimization for infrastructure.
Publisher: John Wiley & Sons
ISBN: 1119897610
Category : Technology & Engineering
Languages : en
Pages : 610
Book Description
Accessible and practical framework for machine learning applications and solutions for civil and environmental engineers This textbook introduces engineers and engineering students to the applications of artificial intelligence (AI), machine learning (ML), and machine intelligence (MI) in relation to civil and environmental engineering projects and problems, presenting state-of-the-art methodologies and techniques to develop and implement algorithms in the engineering domain. Through real-world projects like analysis and design of structural members, optimizing concrete mixtures for site applications, examining concrete cracking via computer vision, evaluating the response of bridges to hazards, and predicating water quality and energy expenditure in buildings, this textbook offers readers in-depth case studies with solved problems that are commonly faced by civil and environmental engineers. The approaches presented range from simplified to advanced methods, incorporating coding-based and coding-free techniques. Professional engineers and engineering students will find value in the step-by-step examples that are accompanied by sample databases and codes for readers to practice with. Written by a highly qualified professional with significant experience in the field, Machine Learning includes valuable information on: The current state of machine learning and causality in civil and environmental engineering as viewed through a scientometrics analysis, plus a historical perspective Supervised vs. unsupervised learning for regression, classification, and clustering problems Explainable and causal methods for practical engineering problems Database development, outlining how an engineer can effectively collect and verify appropriate data to be used in machine intelligence analysis A framework for machine learning adoption and application, covering key questions commonly faced by practitioners This textbook is a must-have reference for undergraduate/graduate students to learn concepts on the use of machine learning, for scientists/researchers to learn how to integrate machine learning into civil and environmental engineering, and for design/engineering professionals as a reference guide for undertaking MI design, simulation, and optimization for infrastructure.
Evolutionary Algorithms for Solving Multi-Objective Problems
Author: Carlos Coello Coello
Publisher: Springer Science & Business Media
ISBN: 0387367977
Category : Computers
Languages : en
Pages : 810
Book Description
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
Publisher: Springer Science & Business Media
ISBN: 0387367977
Category : Computers
Languages : en
Pages : 810
Book Description
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.