Applied Computer Vision and Soft Computing with Interpretable AI

Applied Computer Vision and Soft Computing with Interpretable AI PDF Author: Swati V. Shinde
Publisher: CRC Press
ISBN: 1000952495
Category : Computers
Languages : en
Pages : 333

Get Book Here

Book Description
This reference text presents the knowledge base of computer vision and soft computing techniques with their applications for sustainable developments. Features: Covers a variety of deep learning architectures useful for computer vision tasks Demonstrates the use of different soft computing techniques and their applications for different computer vision tasks Highlights the unified strengths of hybrid techniques based on deep learning and soft computing taken together that give the interpretable, adaptive, and optimized solution to a given problem Addresses the different issues and further research opportunities in computer vision and soft computing Describes all the concepts with practical examples and case studies with appropriate performance measures that validate the applicability of the respective technique to a certain domain Considers recent real word problems and the prospective solutions to these problems This book will be useful to researchers, students, faculty, and industry personnel who are eager to explore the power of deep learning and soft computing for different computer vision tasks.

Applied Computer Vision and Soft Computing with Interpretable AI

Applied Computer Vision and Soft Computing with Interpretable AI PDF Author: Swati V. Shinde
Publisher: CRC Press
ISBN: 1000952495
Category : Computers
Languages : en
Pages : 333

Get Book Here

Book Description
This reference text presents the knowledge base of computer vision and soft computing techniques with their applications for sustainable developments. Features: Covers a variety of deep learning architectures useful for computer vision tasks Demonstrates the use of different soft computing techniques and their applications for different computer vision tasks Highlights the unified strengths of hybrid techniques based on deep learning and soft computing taken together that give the interpretable, adaptive, and optimized solution to a given problem Addresses the different issues and further research opportunities in computer vision and soft computing Describes all the concepts with practical examples and case studies with appropriate performance measures that validate the applicability of the respective technique to a certain domain Considers recent real word problems and the prospective solutions to these problems This book will be useful to researchers, students, faculty, and industry personnel who are eager to explore the power of deep learning and soft computing for different computer vision tasks.

Artificial Intelligence

Artificial Intelligence PDF Author: Leonidas Deligiannidis
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111344126
Category : Computers
Languages : en
Pages : 442

Get Book Here

Book Description
Artificial Intelligence (AI) revolves around creating and utilizing intelligent machines through science and engineering. This book delves into the theory and practical applications of computer science methods that incorporate AI across many domains. It covers techniques such as Machine Learning (ML), Convolutional Neural Networks (CNN), Deep Learning (DL), and Large Language Models (LLM) to tackle complex issues and overcome various challenges.

Cutting Edge Applications of Computational Intelligence Tools and Techniques

Cutting Edge Applications of Computational Intelligence Tools and Techniques PDF Author: Kevin Daimi
Publisher: Springer Nature
ISBN: 3031441273
Category : Technology & Engineering
Languages : en
Pages : 355

Get Book Here

Book Description
The book delivers an excellent professional development resource for educators and practitioners on the cutting-edge computational intelligence techniques and applications. It covers many areas and topics of computational intelligence techniques and applications proposed by computational intelligence experts and researchers and furthers the enhancement of the community outreach and engagement component of computational intelligence techniques and applications. Furthermore, it presents a rich collection of manuscripts in highly regarded computational intelligence techniques and applications topics that have been creatively compiled. Computers are capable of learning from data and observations and providing solutions to real-life complex problems, following the same reasoning approach of human experts in various fields. This book endows a rich collection of applications in widespread areas. Among the areas addressed in this book are Computational Intelligence Principles and Techniques; CI in Manufacturing, Engineering, and Industry; CI in Recognition and Processing; CI in Robotics and Automation; CI in Communications and Networking; CI in Traditional Vehicles, Electric Vehicles, and Autonomous Vehicles; CI in Smart Cities and Smart Energy Systems; and CI in Finance, Business, Economics, and Education. These areas span many topics including repetitive manufacturing, discrete manufacturing, process manufacturing, electronic systems, speech recognition, pattern recognition, signal processing, image processing, industrial monitoring, vision systems for automation and robotics, cooperative and network robotics, perception, planning, control, urban traffic networks control, vehicle-to-roadside communications, smart buildings, smart urbanism, smart infrastructure, smart connected communities, smart energy, security, arts, and music.

Proceedings of the international conference on Machine Learning

Proceedings of the international conference on Machine Learning PDF Author: John Anderson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Artificial Intelligence, Management and Trust

Artificial Intelligence, Management and Trust PDF Author: Mariusz Sołtysik
Publisher: Taylor & Francis
ISBN: 1000946843
Category : Business & Economics
Languages : en
Pages : 212

Get Book Here

Book Description
The main challenge related to the development of artificial intelligence (AI) is to establish harmonious human-AI relations, necessary for the proper use of its potential. AI will eventually transform many businesses and industries; its pace of development is influenced by the lack of trust on the part of society. AI autonomous decision-making is still in its infancy, but use cases are evolving at an ever-faster pace. Over time, AI will be responsible for making more decisions, and those decisions will be of greater importance. The monograph aims to comprehensively describe AI technology in three aspects: organizational, psychological, and technological in the context of the increasingly bold use of this technology in management. Recognizing the differences between trust in people and AI agents and identifying the key psychological factors that determine the development of trust in AI is crucial for the development of modern Industry 4.0 organizations. So far, little is known about trust in human-AI relationships and almost nothing about the psychological mechanisms involved. The monograph will contribute to a better understanding of how trust is built between people and AI agents, what makes AI agents trustworthy, and how their morality is assessed. It will therefore be of interest to researchers, academics, practitioners, and advanced students with an interest in trust research, management of technology and innovation, and organizational management.

Explainable AI in Healthcare

Explainable AI in Healthcare PDF Author: Mehul S Raval
Publisher: CRC Press
ISBN: 100090640X
Category : Medical
Languages : en
Pages : 346

Get Book Here

Book Description
This book combines technology and the medical domain. It covers advances in computer vision (CV) and machine learning (ML) that facilitate automation in diagnostics and therapeutic and preventive health care. The special focus on eXplainable Artificial Intelligence (XAI) uncovers the black box of ML and bridges the semantic gap between the technologists and the medical fraternity. Explainable AI in Healthcare: Unboxing Machine Learning for Biomedicine intends to be a premier reference for practitioners, researchers, and students at basic, intermediary levels and expert levels in computer science, electronics and communications, information technology, instrumentation and control, and electrical engineering. This book will benefit readers in the following ways: Explores state of art in computer vision and deep learning in tandem to develop autonomous or semi-autonomous algorithms for diagnosis in health care Investigates bridges between computer scientists and physicians being built with XAI Focuses on how data analysis provides the rationale to deal with the challenges of healthcare and making decision-making more transparent Initiates discussions on human-AI relationships in health care Unites learning for privacy preservation in health care

Explainable and Interpretable Models in Computer Vision and Machine Learning

Explainable and Interpretable Models in Computer Vision and Machine Learning PDF Author: Hugo Jair Escalante
Publisher: Springer
ISBN: 3319981315
Category : Computers
Languages : en
Pages : 305

Get Book Here

Book Description
This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations

Learning and Soft Computing

Learning and Soft Computing PDF Author: Vojislav Kecman
Publisher: MIT Press
ISBN: 9780262112550
Category : Computers
Languages : en
Pages : 556

Get Book Here

Book Description
This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.

Encyclopedia of Artificial Intelligence

Encyclopedia of Artificial Intelligence PDF Author: Juan Ramon Rabunal
Publisher: IGI Global
ISBN: 1599048507
Category : Computers
Languages : en
Pages : 1673

Get Book Here

Book Description
"This book is a comprehensive and in-depth reference to the most recent developments in the field covering theoretical developments, techniques, technologies, among others"--Provided by publisher.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.