Applied Bayesian and Classical Inference

Applied Bayesian and Classical Inference PDF Author: F. Mosteller
Publisher: Springer Science & Business Media
ISBN: 1461252563
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
The new version has two additions. First, at the suggestion of Stephen Stigler I we have replaced the Table of Contents by what he calls an Analytic Table of Contents. Following the title of each section or subsection is a description of the content of the section. This material helps the reader in several ways, for example: by giving a synopsis of the book, by explaining where the various data tables are and what they deal with, by telling what theory is described where. We did several distinct full studies for the Federalist papers as well as many minor side studies. Some or all may offer information both to the applied and the theoretical reader. We therefore try to give in this Contents more than the few cryptic words in a section heading to ~peed readers in finding what they want. Seconq, we have prepared an extra chapter dealing with authorship work published from. about 1969 to 1983. Although a chapter cannot compre hensively Gover a field where many books now appear, it can mention most ofthe book-length works and the main thread of authorship' studies published in English. We founq biblical authorship studies so extensive and com plicated that we thought it worthwhile to indicate some papers that would bring out the controversies that are taking place. We hope we have given the flavor of developments over the 15 years mentioned. We have also corrected a few typographical errors.

Applied Bayesian and Classical Inference

Applied Bayesian and Classical Inference PDF Author: F. Mosteller
Publisher: Springer Science & Business Media
ISBN: 1461252563
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
The new version has two additions. First, at the suggestion of Stephen Stigler I we have replaced the Table of Contents by what he calls an Analytic Table of Contents. Following the title of each section or subsection is a description of the content of the section. This material helps the reader in several ways, for example: by giving a synopsis of the book, by explaining where the various data tables are and what they deal with, by telling what theory is described where. We did several distinct full studies for the Federalist papers as well as many minor side studies. Some or all may offer information both to the applied and the theoretical reader. We therefore try to give in this Contents more than the few cryptic words in a section heading to ~peed readers in finding what they want. Seconq, we have prepared an extra chapter dealing with authorship work published from. about 1969 to 1983. Although a chapter cannot compre hensively Gover a field where many books now appear, it can mention most ofthe book-length works and the main thread of authorship' studies published in English. We founq biblical authorship studies so extensive and com plicated that we thought it worthwhile to indicate some papers that would bring out the controversies that are taking place. We hope we have given the flavor of developments over the 15 years mentioned. We have also corrected a few typographical errors.

Applied Bayesian Statistics

Applied Bayesian Statistics PDF Author: Mary Kathryn Cowles
Publisher: Springer Science & Business Media
ISBN: 1461456967
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
This book is based on over a dozen years teaching a Bayesian Statistics course. The material presented here has been used by students of different levels and disciplines, including advanced undergraduates studying Mathematics and Statistics and students in graduate programs in Statistics, Biostatistics, Engineering, Economics, Marketing, Pharmacy, and Psychology. The goal of the book is to impart the basics of designing and carrying out Bayesian analyses, and interpreting and communicating the results. In addition, readers will learn to use the predominant software for Bayesian model-fitting, R and OpenBUGS. The practical approach this book takes will help students of all levels to build understanding of the concepts and procedures required to answer real questions by performing Bayesian analysis of real data. Topics covered include comparing and contrasting Bayesian and classical methods, specifying hierarchical models, and assessing Markov chain Monte Carlo output. Kate Cowles taught Suzuki piano for many years before going to graduate school in Biostatistics. Her research areas are Bayesian and computational statistics, with application to environmental science. She is on the faculty of Statistics at The University of Iowa.

Applied Bayesian and Classical Inference

Applied Bayesian and Classical Inference PDF Author: F. Mosteller
Publisher:
ISBN: 9781461252573
Category :
Languages : en
Pages : 348

Get Book Here

Book Description


Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives PDF Author: Andrew Gelman
Publisher: John Wiley & Sons
ISBN: 9780470090435
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Introduction to Applied Bayesian Statistics and Estimation for Social Scientists

Introduction to Applied Bayesian Statistics and Estimation for Social Scientists PDF Author: Scott M. Lynch
Publisher: Springer Science & Business Media
ISBN: 0387712658
Category : Social Science
Languages : en
Pages : 376

Get Book Here

Book Description
This book outlines Bayesian statistical analysis in great detail, from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.

Applied Bayesian and Classical Inference

Applied Bayesian and Classical Inference PDF Author: Frederick Mosteller
Publisher:
ISBN: 9783540909910
Category : Authorship, Disputed
Languages : en
Pages : 303

Get Book Here

Book Description


Fueling Innovation and Discovery

Fueling Innovation and Discovery PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309254736
Category : Mathematics
Languages : en
Pages : 64

Get Book Here

Book Description
The mathematical sciences are part of everyday life. Modern communication, transportation, science, engineering, technology, medicine, manufacturing, security, and finance all depend on the mathematical sciences. Fueling Innovation and Discovery describes recent advances in the mathematical sciences and advances enabled by mathematical sciences research. It is geared toward general readers who would like to know more about ongoing advances in the mathematical sciences and how these advances are changing our understanding of the world, creating new technologies, and transforming industries. Although the mathematical sciences are pervasive, they are often invoked without an explicit awareness of their presence. Prepared as part of the study on the Mathematical Sciences in 2025, a broad assessment of the current state of the mathematical sciences in the United States, Fueling Innovation and Discovery presents mathematical sciences advances in an engaging way. The report describes the contributions that mathematical sciences research has made to advance our understanding of the universe and the human genome. It also explores how the mathematical sciences are contributing to healthcare and national security, and the importance of mathematical knowledge and training to a range of industries, such as information technology and entertainment. Fueling Innovation and Discovery will be of use to policy makers, researchers, business leaders, students, and others interested in learning more about the deep connections between the mathematical sciences and every other aspect of the modern world. To function well in a technologically advanced society, every educated person should be familiar with multiple aspects of the mathematical sciences.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Get Book Here

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Probability and Bayesian Modeling

Probability and Bayesian Modeling PDF Author: Jim Albert
Publisher: CRC Press
ISBN: 1351030132
Category : Mathematics
Languages : en
Pages : 553

Get Book Here

Book Description
Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

Practical Bayesian Inference

Practical Bayesian Inference PDF Author: Coryn A. L. Bailer-Jones
Publisher: Cambridge University Press
ISBN: 1108127673
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work.