Applications of Porous Coordination Polymers and Metal Organic Frameworks (MOFs)

Applications of Porous Coordination Polymers and Metal Organic Frameworks (MOFs) PDF Author: Hemanta Kalita
Publisher: GRIN Verlag
ISBN: 3346690350
Category : Science
Languages : en
Pages : 50

Get Book Here

Book Description
Document from the year 2022 in the subject Chemistry - Macromolecular Chemistry, Polymer Chemistry, grade: 17, Gauhati University, language: English, abstract: Porous coordination polymers, also known as metal organic frameworks are a new type of hybrid material constructed via self-assembly of metal ions/metal clusters which function as nodes and organic ligands which act as bridges or linkers. They are one of the earliest developed classes of metal containing polymers. They extend infinitely one, two or three dimensional framework through coordination bonding, hydrogen bonding, π–π stacking, C-H-π interactions as well as van der Waal forces. These weaker non-covalent interactions, are important for the packing of the one dimensional chains, two-dimensional nets and three-dimensional frameworks. In view of the tunable structures and promising properties shown by these systems various complexities have been prepared and thoroughly investigated over last decade. MOFs are currently flourishing fields of research owing to their intriguing structural motifs and various potential applications, in the field of gas storage, gas separation, catalysis, ion exchange, microelectronics, non linear optics, sensors, medicine and molecular magnetism etc. They possess structural regularity, high porosity, high surface area resulting in greater potential applications than conventional zeolites or activated carbons and mesoporous silica. For the construction of porous coordination polymers with diverse structures and properties selection of the special inorganic and organic building blocks is one of the important factors. Multicarboxylate organic ligands have proved to be an excellent choice for the construction of MOFs of higher nuclearity due to their different coordination modes with the metals, molecular flexibilities and structural stabilities. Metal carboxylate linker in combination with cross linked or pillered polypyridine have generated many interesting coordination architecture. Making use of transition metal carboxylate and linear bridging auxiliary ligands it is possible to construct 1-D, 2-D and 3-D porous coordination polymer of different pore structures and porosities. Aside from coordination bonding interactions, various non-covalent bonding or some weak intra- or intermolecular interactions, such as hydrogen-bonding, π–π stacking and C–H–π interactions or van der Waals interactions also influence the formation of final architectures.

Applications of Porous Coordination Polymers and Metal Organic Frameworks (MOFs)

Applications of Porous Coordination Polymers and Metal Organic Frameworks (MOFs) PDF Author: Hemanta Kalita
Publisher: GRIN Verlag
ISBN: 3346690350
Category : Science
Languages : en
Pages : 50

Get Book Here

Book Description
Document from the year 2022 in the subject Chemistry - Macromolecular Chemistry, Polymer Chemistry, grade: 17, Gauhati University, language: English, abstract: Porous coordination polymers, also known as metal organic frameworks are a new type of hybrid material constructed via self-assembly of metal ions/metal clusters which function as nodes and organic ligands which act as bridges or linkers. They are one of the earliest developed classes of metal containing polymers. They extend infinitely one, two or three dimensional framework through coordination bonding, hydrogen bonding, π–π stacking, C-H-π interactions as well as van der Waal forces. These weaker non-covalent interactions, are important for the packing of the one dimensional chains, two-dimensional nets and three-dimensional frameworks. In view of the tunable structures and promising properties shown by these systems various complexities have been prepared and thoroughly investigated over last decade. MOFs are currently flourishing fields of research owing to their intriguing structural motifs and various potential applications, in the field of gas storage, gas separation, catalysis, ion exchange, microelectronics, non linear optics, sensors, medicine and molecular magnetism etc. They possess structural regularity, high porosity, high surface area resulting in greater potential applications than conventional zeolites or activated carbons and mesoporous silica. For the construction of porous coordination polymers with diverse structures and properties selection of the special inorganic and organic building blocks is one of the important factors. Multicarboxylate organic ligands have proved to be an excellent choice for the construction of MOFs of higher nuclearity due to their different coordination modes with the metals, molecular flexibilities and structural stabilities. Metal carboxylate linker in combination with cross linked or pillered polypyridine have generated many interesting coordination architecture. Making use of transition metal carboxylate and linear bridging auxiliary ligands it is possible to construct 1-D, 2-D and 3-D porous coordination polymer of different pore structures and porosities. Aside from coordination bonding interactions, various non-covalent bonding or some weak intra- or intermolecular interactions, such as hydrogen-bonding, π–π stacking and C–H–π interactions or van der Waals interactions also influence the formation of final architectures.

Applications of Metal-Organic Frameworks and Their Derived Materials

Applications of Metal-Organic Frameworks and Their Derived Materials PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 111965095X
Category : Science
Languages : en
Pages : 415

Get Book Here

Book Description
Metal–organic frameworks (MOFs) are porous crystalline polymers constructed by metal sites and organic building blocks. Since the discovery of MOFs in the 1990s, they have received tremendous research attention for various applications due to their high surface area, controllable morphology, tunable chemical properties, and multifunctionalities, including MOFs as precursors and self-sacrificing templates for synthesizing metal oxides, heteroatom-doped carbons, metal-atoms encapsulated carbons, and others. Thus, awareness and knowledge about MOFs and their derived nanomaterials with conceptual understanding are essential for the advanced material community. This breakthrough new volume aims to explore down-to-earth applications in fields such as biomedical, environmental, energy, and electronics. This book provides an overview of the structural and fundamental properties, synthesis strategies, and versatile applications of MOFs and their derived nanomaterials. It gives an updated and comprehensive account of the research in the field of MOFs and their derived nanomaterials. Whether as a reference for industry professionals and nanotechnologists or for use in the classroom for graduate and postgraduate students, faculty members, and research and development specialists working in the area of inorganic chemistry, materials science, and chemical engineering, this is a must-have for any library.

Metal-Organic Frameworks with Heterogeneous Structures

Metal-Organic Frameworks with Heterogeneous Structures PDF Author: Ali Morsali
Publisher: John Wiley & Sons
ISBN: 1119792045
Category : Science
Languages : en
Pages : 226

Get Book Here

Book Description
METAL-ORGANIC FRAMEWORKS WITH HETEROGENEOUS STRUCTURES A unique book that sheds light on Metal-Organic Frameworks complex systems that often display behaviors that surprise and cannot be easily described. In this book, MOF-based heterostructures technology with key characteristics is completely analyzed and the current state-of-the-art is discussed. The authors focus on the complex heterostructures promoted by MOFs with advantage of their recent new advances for various applications with particular emphasis on their design. As an extension of the design and synthesis, the shaping technology of heterostructure MOFs is also of great significance to the future practical applications in industry (adsorption/desorption, gas storage, catalysis, conductivity, optical activity) of this class of complex porous materials. As this unique book covers all of the aspects of complexity in MOFs with heterogeneous structures, it serves as an essential reference to the concepts of introducing complexity to designing the future new platforms of materials with advanced and superior properties. This important compact book provides the reader with: The principal aspects of heterogeneity that produce complexity in MOFs, their effects in the structure chemistry, performance and applications The effects of complexities on the structure of metal-organic frameworks The roles of complexities on metal-organic frameworks applications Explanation of synthesis strategies of the complex heterostructure MOFs. Audience This book will be beneficial for chemists, materials engineers, advanced postgraduate and graduate students, researchers and specialists who are working in the area of materials design and their chemistry, porous crystalline materials, coordination polymers, hybrid and functional materials, as well as industry professionals, such as those working on selective catalysis and adsorption-separation, optics, gas capture, processes of biological and pharmaceutical.

Metal-Organic Frameworks for Biomedical Applications

Metal-Organic Frameworks for Biomedical Applications PDF Author: Masoud Mozafari
Publisher: Woodhead Publishing
ISBN: 0128169842
Category : Medical
Languages : en
Pages : 584

Get Book Here

Book Description
Metal-Organic Frameworks for Biomedical Applications is a comprehensive, authoritative reference that offers a substantial and complete treatment of published results that have yet to be critically reviewed. It offers a summary of current research and provides in-depth understanding of the role of metal-organic frameworks in biomedical engineering. The title consists of twenty-two chapters presented by leading international researchers in the field. Chapters are arranged by target-application in biomedical engineering, allowing medical and pharmaceutic specialists to translate current materials and engineering science on metal-organic frameworks into their work. Presents the state-of-the art in metal-organic frameworks for biomedical applications Offers comprehensive treatment of metal-organic frameworks that is useful to pharmaceutic and medical experts who are non-specialists in materials science Helps materials scientists and engineers understand the needs of biomedical engineering Critically-reviews published results and current research in the field

Metal-Organic Framework Materials

Metal-Organic Framework Materials PDF Author: Leonard R. MacGillivray
Publisher: John Wiley & Sons
ISBN: 1118931580
Category : Science
Languages : en
Pages : 1210

Get Book Here

Book Description
Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc

Metal-Organic Frameworks

Metal-Organic Frameworks PDF Author: Leonard R. MacGillivray
Publisher: John Wiley & Sons
ISBN: 111803516X
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Metal-organic frameworks represent a new class of materials that may solve the hydrogen storage problem associated with hydrogen-fueled vehicles. In this first definitive guide to metal-organic framework chemistry, author L. MacGillivray addresses state-of-art developments in this promising technology for alternative fuels. Providing professors, graduate and undergraduate students, structural chemists, physical chemists, and chemical engineers with a historical perspective, as well as the most up-to-date developments by leading experts, Metal-Organic Frameworks examines structure, symmetry, supramolecular chemistry, surface engineering, metal-organometallic frameworks, properties, and reactions.

Metal-Organic Framework Composites

Metal-Organic Framework Composites PDF Author: Anish Khan
Publisher: Materials Research Forum LLC
ISBN: 1644900289
Category : Technology & Engineering
Languages : en
Pages : 286

Get Book Here

Book Description
Composites based on Metal-organic frameworks (MOFs) have exceptional physical and chemical properties and offer a great number of advanced applications in such fields as energy storage, energy conversion by catalysis, sensors for environmental applications, environment safety and industrial wastewater treatments. They also have interesting medical applications, such as encapsulation of enzymes. The present book covers design, synthesis and preparation of various MOFs, as well as the resulting product characteristics: homogenous morphology, small size dispersion, high thermal stability and desired surface area.

Elaboration And Applications Of Metal-organic Frameworks

Elaboration And Applications Of Metal-organic Frameworks PDF Author: Shengqian Ma
Publisher: World Scientific
ISBN: 9813226749
Category : Science
Languages : en
Pages : 730

Get Book Here

Book Description
This title takes researchers in as well as out of the field of metal-organic framework (MOF) and then guides them on a journey to rediscover and rethink how these designer coordination polymers will influence the realm of materials science. This book opens with a look at a deeply controversial issue, MOF stability, which has plagued many systems, but ultimately has led to better materials that proved to be more robust allowing them to be investigated for multiple applications. This book successfully highlights many of these useful applications that MOFs are well adapted for. Because MOF components, inorganic and organic, can combine the best of both chemical domains, MOFs will improve our environment by removing harmful contaminants from the air and water, reduce the energy required to perform chemical reactions, partition hard to separate molecular mixtures, and form the next-generation of magnetic and electronic materials. MOFs will eventually be used for everyday activities — for monitoring or reacting to changing conditions. Readers of this book can then take note and implement MOFs in their line of research.

Metal-Organic Framework Composites

Metal-Organic Framework Composites PDF Author: Anish Khan
Publisher: Materials Research Forum LLC
ISBN: 1644900424
Category : Technology & Engineering
Languages : en
Pages : 426

Get Book Here

Book Description
Because of their nanoporous structures and ultra-high surface areas Metal-Organic Framework Composites (MOFs) are very interesting materials. The book focusses on the following applications: gas capture and storage, especially molecular hydrogen storage; performance enhancement of Li-ion batteries; gas separation, nano-filtration, ionic sieving, water treatment, and catalysis; sustainable renewable energy resources, electrochemical capacitors, including supercapacitors, asymmetric supercapacitors and hybrid supercapacitors; biomedical disciplines including drug delivery, theranostics; biological detection and imaging; nanoparticle photosensitizers for photodynamic therapy (PDT) and photothermal therapy (PTT). Keywords: MOF Materials, Hydrogen Storage, Renewable Energy Applications, Lithium Batteries, MOF-Quantum Dots, Clean Energy, Nanoporous MOFs, Supercapacitors, Therapeutic Applications, Biosensing, Bioimaging, Phototherapy of Cancer, Gas Separation, Nano-filtration, Ionic Sieving, Water Treatment, Drug Delivery, Theranostics; Nanoparticle Photosensitizers, Photodynamic Therapy (PDT), Photothermal Therapy (PTT).

Pillared Metal-Organic Frameworks

Pillared Metal-Organic Frameworks PDF Author: Lida Hashemi
Publisher: John Wiley & Sons
ISBN: 1119460379
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
In the last two decades, metal-organic frameworks (MOFs) have provoked considerable interest due to their potential applications in different fields such as catalysis, gas storage and sensing. The most important advantages of MOFs over other porous materials is the ability of tailoring their pore size, functionality and even the topology of the framework by rational selection of the molecular building blocks. Therefore, many chemists have tried to engineer the structure of MOFs to achieve specific functions. Pillared metal organic frameworks are a class of MOFs composed of inorganic secondary building units (SBUs) and two sets of organic linkers, generally oxygen- and nitrogen-donor ligands. Typically, in the structure of pillared MOFs, the oxygen-donor struts link the metal clusters into a two-dimensional (2D) sheet and the N-donor struts pillar the sheets to generate a three-dimensional (3D) framework. Thus, the construction of MOFs by utilizing two sets of organic linkers could provide an extra possibility for further tuning of MOF’s pore walls. A variety of functional groups including imine, amide and heterocycles were successfully incorporated into bidentate pillar ligand skeleton. Interestingly, by using pillaring linkers with different length, a wide diversity of metal-organic frameworks with tunable pore dimensions and topologies can be obtained. In this book, we introduce pillared metal organic frameworks with their properties and applications.