Author: Wason, Ritika
Publisher: IGI Global
ISBN: 1799821021
Category : Medical
Languages : en
Pages : 248
Book Description
Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.
Applications of Deep Learning and Big IoT on Personalized Healthcare Services
Author: Wason, Ritika
Publisher: IGI Global
ISBN: 1799821021
Category : Medical
Languages : en
Pages : 248
Book Description
Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.
Publisher: IGI Global
ISBN: 1799821021
Category : Medical
Languages : en
Pages : 248
Book Description
Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.
Deep Learning for Healthcare Services IoT and Big Data Analytics
Author: Parma Nand
Publisher: Bentham Science Publishers
ISBN: 9815080245
Category : Computers
Languages : en
Pages : 129
Book Description
This book highlights the applications of deep learning algorithms in implementing big data and IoT enabled smart solutions to treat and care for terminally ill patients. It presents 5 concise chapters showing how these technologies can empower the conventional doctor patient relationship in a more dynamic, transparent, and personalized manner. The key topics covered in this book include: - The Role of Deep Learning in Healthcare Industry: Limitations - Generative Adversarial Networks for Deep Learning in Healthcare - The Role of Blockchain in the Healthcare Sector - Brain Tumor Detection Based on Different Deep Neural Networks Key features include a thorough, research-based overview of technologies that can assist deep learning models in the healthcare sector, including architecture and industrial scope. The book also presents a robust image processing model for brain tumor screening. Through this book, the editors have attempted to combine numerous compelling views, guidelines and frameworks. Healthcare industry professionals will understand how Deep Learning can improve health care service delivery.
Publisher: Bentham Science Publishers
ISBN: 9815080245
Category : Computers
Languages : en
Pages : 129
Book Description
This book highlights the applications of deep learning algorithms in implementing big data and IoT enabled smart solutions to treat and care for terminally ill patients. It presents 5 concise chapters showing how these technologies can empower the conventional doctor patient relationship in a more dynamic, transparent, and personalized manner. The key topics covered in this book include: - The Role of Deep Learning in Healthcare Industry: Limitations - Generative Adversarial Networks for Deep Learning in Healthcare - The Role of Blockchain in the Healthcare Sector - Brain Tumor Detection Based on Different Deep Neural Networks Key features include a thorough, research-based overview of technologies that can assist deep learning models in the healthcare sector, including architecture and industrial scope. The book also presents a robust image processing model for brain tumor screening. Through this book, the editors have attempted to combine numerous compelling views, guidelines and frameworks. Healthcare industry professionals will understand how Deep Learning can improve health care service delivery.
Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Machine learning and deep learning applications in pathogenic microbiome research
Author: Gang Ye
Publisher: Frontiers Media SA
ISBN: 283254956X
Category : Science
Languages : en
Pages : 162
Book Description
The pathogenic microbiome is the community of microorganisms that live in humans or animals and cause disease. These microorganisms include bacteria, viruses, fungi, protozoa, etc. They usually live in the host's skin, mouth, intestinal tract, genitourinary tract, etc. Normally, there is a state of equilibrium between the host and these microorganisms, but when this equilibrium is disturbed, these microorganisms become the pathogenic microbiome and cause disease. To advance the field of microbiome research, artificial intelligence methods, especially machine learning and deep learning, have recently been used as important tools due to their powerful predictive and informative potential. Classical machine learning algorithms such as linear regression, random forests, support vector machines, etc. perform well on microbiome data. However, as algorithms have been iteratively updated, these models have long been relegated to the basics. Linear regression models are now more often used to interpret these models more intuitively by using the output of other models as input. Deep learning is a branch of machine learning that involves a large number of neural network structures. Deep learning relies on neurons whose role is to transform the input and propagate it forward to the next neuron. Deep learning is currently being used with spectacular success in areas such as image recognition, text processing and automatic translation. As a result, a growing number of researchers are attempting to apply deep learning techniques to biomedical data analysis. Although there are still challenges in practical applications, such as model interpretability, data availability, model evaluation and selection, machine learning and deep learning are very promising tools in pathogenic microbiome research. This Research Topic, therefore, aims to contribute to the latest advances in machine learning, especially deep learning, and to explore new applications of related techniques in pathogenic microbiome research, trying to find relationships between microbiome and human health as well as the environment by studying high-throughput sequencing data of microbes, laying the foundation for further applications for subsequent treatment or forensic identification. We welcome submissions of Original Research, Brief Research Report, Review, Mini-Review, Methods, Perspective and Opinion articles that focus on, but are not limited to, the utilization of machine learning and deep learning to address the following subtopics. 1. Classification and identification of pathogenic microorganisms 2. Virulence prediction of pathogenic microorganisms 3. Antimicrobial resistance prediction of pathogenic microorganisms 4. Population structure and epidemiology of pathogenic microorganisms-related diseases 5. Immunological studies of pathogenic microorganisms 6. Drug target prediction for pathogenic microorganisms-related diseases
Publisher: Frontiers Media SA
ISBN: 283254956X
Category : Science
Languages : en
Pages : 162
Book Description
The pathogenic microbiome is the community of microorganisms that live in humans or animals and cause disease. These microorganisms include bacteria, viruses, fungi, protozoa, etc. They usually live in the host's skin, mouth, intestinal tract, genitourinary tract, etc. Normally, there is a state of equilibrium between the host and these microorganisms, but when this equilibrium is disturbed, these microorganisms become the pathogenic microbiome and cause disease. To advance the field of microbiome research, artificial intelligence methods, especially machine learning and deep learning, have recently been used as important tools due to their powerful predictive and informative potential. Classical machine learning algorithms such as linear regression, random forests, support vector machines, etc. perform well on microbiome data. However, as algorithms have been iteratively updated, these models have long been relegated to the basics. Linear regression models are now more often used to interpret these models more intuitively by using the output of other models as input. Deep learning is a branch of machine learning that involves a large number of neural network structures. Deep learning relies on neurons whose role is to transform the input and propagate it forward to the next neuron. Deep learning is currently being used with spectacular success in areas such as image recognition, text processing and automatic translation. As a result, a growing number of researchers are attempting to apply deep learning techniques to biomedical data analysis. Although there are still challenges in practical applications, such as model interpretability, data availability, model evaluation and selection, machine learning and deep learning are very promising tools in pathogenic microbiome research. This Research Topic, therefore, aims to contribute to the latest advances in machine learning, especially deep learning, and to explore new applications of related techniques in pathogenic microbiome research, trying to find relationships between microbiome and human health as well as the environment by studying high-throughput sequencing data of microbes, laying the foundation for further applications for subsequent treatment or forensic identification. We welcome submissions of Original Research, Brief Research Report, Review, Mini-Review, Methods, Perspective and Opinion articles that focus on, but are not limited to, the utilization of machine learning and deep learning to address the following subtopics. 1. Classification and identification of pathogenic microorganisms 2. Virulence prediction of pathogenic microorganisms 3. Antimicrobial resistance prediction of pathogenic microorganisms 4. Population structure and epidemiology of pathogenic microorganisms-related diseases 5. Immunological studies of pathogenic microorganisms 6. Drug target prediction for pathogenic microorganisms-related diseases
Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics
Author: Sujata Dash
Publisher: CRC Press
ISBN: 1000534057
Category : Computers
Languages : en
Pages : 407
Book Description
Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems
Publisher: CRC Press
ISBN: 1000534057
Category : Computers
Languages : en
Pages : 407
Book Description
Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems
Cognitive Internet of Medical Things for Smart Healthcare
Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 3030558339
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
This book aims to provide a detailed understanding of IoMT-supported applications while engaging premium smart computing methods and improved algorithms in the field of computer science. It contains thirteen chapters discussing various applications under the umbrella of the Internet of Medical Things. These applications geared towards IoMT cloud analysis, machine learning, computer vision and deep learning have enabled the evaluation of the proposed solutions.
Publisher: Springer Nature
ISBN: 3030558339
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
This book aims to provide a detailed understanding of IoMT-supported applications while engaging premium smart computing methods and improved algorithms in the field of computer science. It contains thirteen chapters discussing various applications under the umbrella of the Internet of Medical Things. These applications geared towards IoMT cloud analysis, machine learning, computer vision and deep learning have enabled the evaluation of the proposed solutions.
Deep Learning for Personalized Healthcare Services
Author: Vishal Jain
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110708175
Category : Computers
Languages : en
Pages : 325
Book Description
THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110708175
Category : Computers
Languages : en
Pages : 325
Book Description
THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.
Machine Learning for Healthcare Applications
Author: Sachi Nandan Mohanty
Publisher: John Wiley & Sons
ISBN: 1119791812
Category : Computers
Languages : en
Pages : 418
Book Description
When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.
Publisher: John Wiley & Sons
ISBN: 1119791812
Category : Computers
Languages : en
Pages : 418
Book Description
When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.
Deep Learning in Personalized Healthcare and Decision Support
Author: Harish Garg
Publisher: Elsevier
ISBN: 0443194149
Category : Science
Languages : en
Pages : 402
Book Description
Deep Learning in Personalized Healthcare and Decision Support discusses the potential of deep learning technologies in the healthcare sector. The book covers the application of deep learning tools and techniques in diverse areas of healthcare, such as medical image classification, telemedicine, clinical decision support system, clinical trials, electronic health records, precision medication, Parkinson disease detection, genomics, and drug discovery. In addition, it discusses the use of DL for fraud detection and internet of things. This is a valuable resource for researchers, graduate students and healthcare professionals who are interested in learning more about deep learning applied to the healthcare sector. Although there is an increasing interest by clinicians and healthcare workers, they still lack enough knowledge to efficiently choose and make use of technologies currently available. This book fills that knowledge gap by bringing together experts from technology and clinical fields to cover the topics in depth. - Discusses the application of deep learning in several areas of healthcare, including clinical trials, telemedicine and health records management - Brings together experts in the intersection of deep learning, medicine, healthcare and programming to cover topics in an interdisciplinary way - Uncovers the stakes and possibilities involved in realizing personalized healthcare services through efficient and effective deep learning technologies
Publisher: Elsevier
ISBN: 0443194149
Category : Science
Languages : en
Pages : 402
Book Description
Deep Learning in Personalized Healthcare and Decision Support discusses the potential of deep learning technologies in the healthcare sector. The book covers the application of deep learning tools and techniques in diverse areas of healthcare, such as medical image classification, telemedicine, clinical decision support system, clinical trials, electronic health records, precision medication, Parkinson disease detection, genomics, and drug discovery. In addition, it discusses the use of DL for fraud detection and internet of things. This is a valuable resource for researchers, graduate students and healthcare professionals who are interested in learning more about deep learning applied to the healthcare sector. Although there is an increasing interest by clinicians and healthcare workers, they still lack enough knowledge to efficiently choose and make use of technologies currently available. This book fills that knowledge gap by bringing together experts from technology and clinical fields to cover the topics in depth. - Discusses the application of deep learning in several areas of healthcare, including clinical trials, telemedicine and health records management - Brings together experts in the intersection of deep learning, medicine, healthcare and programming to cover topics in an interdisciplinary way - Uncovers the stakes and possibilities involved in realizing personalized healthcare services through efficient and effective deep learning technologies
Reinvention of Health Applications with IoT
Author: Ambikapathy
Publisher: CRC Press
ISBN: 1000515346
Category : Computers
Languages : en
Pages : 202
Book Description
This book discusses IoT in healthcare and how it enables interoperability, machine-to-machine communication, information exchange, and data movement. It also covers how healthcare service delivery automates patient care with the help of mobility solutions, new technologies, and next-gen healthcare facilities with challenges faced and suggested solutions prescribed. Reinvention of Health Applications with IoT: Challenges and Solutions presents the latest applications of IoT in healthcare along with challenges and solutions. It looks at a comparison of advanced technologies such as Deep Learning, Machine Learning, and AI and explores the ways they can be applied to sensed data to improve prediction and decision-making in smart health services. It focuses on society 5.0 technologies and illustrates how they can improve society and the transformation of IoT in healthcare facilities to support patient independence. Case studies are included for applications such as smart eyewear, smart jackets, and smart beds. The book will also go into detail on wearable technologies and how they can communicate patient information to doctors in medical emergencies. The target audiences for this edited volume is researchers, practitioners, students, as well as key stakeholders involved in and working on healthcare engineering solutions.
Publisher: CRC Press
ISBN: 1000515346
Category : Computers
Languages : en
Pages : 202
Book Description
This book discusses IoT in healthcare and how it enables interoperability, machine-to-machine communication, information exchange, and data movement. It also covers how healthcare service delivery automates patient care with the help of mobility solutions, new technologies, and next-gen healthcare facilities with challenges faced and suggested solutions prescribed. Reinvention of Health Applications with IoT: Challenges and Solutions presents the latest applications of IoT in healthcare along with challenges and solutions. It looks at a comparison of advanced technologies such as Deep Learning, Machine Learning, and AI and explores the ways they can be applied to sensed data to improve prediction and decision-making in smart health services. It focuses on society 5.0 technologies and illustrates how they can improve society and the transformation of IoT in healthcare facilities to support patient independence. Case studies are included for applications such as smart eyewear, smart jackets, and smart beds. The book will also go into detail on wearable technologies and how they can communicate patient information to doctors in medical emergencies. The target audiences for this edited volume is researchers, practitioners, students, as well as key stakeholders involved in and working on healthcare engineering solutions.