Applications of Computer Aided Time Series Modeling

Applications of Computer Aided Time Series Modeling PDF Author: Masanao Aoki
Publisher: Springer Science & Business Media
ISBN: 1461222524
Category : Mathematics
Languages : en
Pages : 335

Get Book Here

Book Description
This book consists of three parts: Part One is composed of two introductory chapters. The first chapter provides an instrumental varible interpretation of the state space time series algorithm originally proposed by Aoki (1983), and gives an introductory account for incorporating exogenous signals in state space models. The second chapter, by Havenner, gives practical guidance in apply ing this algorithm by one of the most experienced practitioners of the method. Havenner begins by summarizing six reasons state space methods are advanta geous, and then walks the reader through construction and evaluation of a state space model for four monthly macroeconomic series: industrial production in dex, consumer price index, six month commercial paper rate, and money stock (Ml). To single out one of the several important insights in modeling that he shares with the reader, he discusses in Section 2ii the effects of sampling er rors and model misspecification on successful modeling efforts. He argues that model misspecification is an important amplifier of the effects of sampling error that may cause symplectic matrices to have complex unit roots, a theoretical impossibility. Correct model specifications increase efficiency of estimators and often eliminate this finite sample problem. This is an important insight into the positive realness of covariance matrices; positivity has been emphasized by system engineers to the exclusion of other methods of reducing sampling error and alleviating what is simply a finite sample problem. The second and third parts collect papers that describe specific applications.

Applications of Computer Aided Time Series Modeling

Applications of Computer Aided Time Series Modeling PDF Author: Masanao Aoki
Publisher: Springer Science & Business Media
ISBN: 1461222524
Category : Mathematics
Languages : en
Pages : 335

Get Book Here

Book Description
This book consists of three parts: Part One is composed of two introductory chapters. The first chapter provides an instrumental varible interpretation of the state space time series algorithm originally proposed by Aoki (1983), and gives an introductory account for incorporating exogenous signals in state space models. The second chapter, by Havenner, gives practical guidance in apply ing this algorithm by one of the most experienced practitioners of the method. Havenner begins by summarizing six reasons state space methods are advanta geous, and then walks the reader through construction and evaluation of a state space model for four monthly macroeconomic series: industrial production in dex, consumer price index, six month commercial paper rate, and money stock (Ml). To single out one of the several important insights in modeling that he shares with the reader, he discusses in Section 2ii the effects of sampling er rors and model misspecification on successful modeling efforts. He argues that model misspecification is an important amplifier of the effects of sampling error that may cause symplectic matrices to have complex unit roots, a theoretical impossibility. Correct model specifications increase efficiency of estimators and often eliminate this finite sample problem. This is an important insight into the positive realness of covariance matrices; positivity has been emphasized by system engineers to the exclusion of other methods of reducing sampling error and alleviating what is simply a finite sample problem. The second and third parts collect papers that describe specific applications.

Case Studies in Bayesian Statistics

Case Studies in Bayesian Statistics PDF Author: Constantine Gatsonis
Publisher: Springer Science & Business Media
ISBN: 1461300355
Category : Mathematics
Languages : en
Pages : 441

Get Book Here

Book Description
The 5th Workshop on Case Studies in Bayesian Statistics was held at the Carnegie Mellon University campus on September 24-25, 1999. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the three invited case studies with the accompanying discussion as well as ten contributed pa pers selected by a refereeing process. The majority of case studies in the volume come from biomedical research. However, the reader will also find studies in education and public policy, environmental pollution, agricul ture, and robotics. INVITED PAPERS The three invited cases studies at the workshop discuss problems in ed ucational policy, clinical trials design, and environmental epidemiology, respectively. 1. In School Choice in NY City: A Bayesian Analysis ofan Imperfect Randomized Experiment J. Barnard, C. Frangakis, J. Hill, and D. Rubin report on the analysis of the data from a randomized study conducted to evaluate the New YorkSchool Choice Scholarship Pro gram. The focus ofthe paper is on Bayesian methods for addressing the analytic challenges posed by extensive non-compliance among study participants and substantial levels of missing data. 2. In Adaptive Bayesian Designs for Dose-Ranging Drug Trials D. Berry, P. Mueller, A. Grieve, M. Smith, T. Parke, R. Blazek, N.

The Optimal Design of Blocked and Split-Plot Experiments

The Optimal Design of Blocked and Split-Plot Experiments PDF Author: Peter Goos
Publisher: Springer Science & Business Media
ISBN: 1461300517
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
This book provides a comprehensive treatment of the design of blocked and split-plot experiments. The optimal design approach advocated in the book will help applied statisticians from industry, medicine, agriculture, chemistry and many other fields of study in setting up tailor-made experiments. The book also contains a theoretical background, a thorough review of the recent work in the area of blocked and split-plot experiments, and a number of interesting theoretical results.

Probability Towards 2000

Probability Towards 2000 PDF Author: L. Accardi
Publisher: Springer Science & Business Media
ISBN: 1461222249
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
Senior probabilists from around the world with widely differing specialities gave their visions of the state of their specialty, why they think it is important, and how they think it will develop in the new millenium. The volume includes papers given at a symposium at Columbia University in 1995, but papers from others not at the meeting were added to broaden the coverage of areas. All papers were refereed.

Studies in the Atmospheric Sciences

Studies in the Atmospheric Sciences PDF Author: Mark L. Berliner
Publisher: Springer Science & Business Media
ISBN: 1461221129
Category : Mathematics
Languages : en
Pages : 209

Get Book Here

Book Description
The need to understand and predict the processes that influence the Earth's atmosphere is one of the grand scientific challenges for the next century. This volume is a series of case studies and review chapters that cover many of the recent developments in statistical methodology that are useful for interpreting atmospheric data. L. Mark Berliner is Professor of Statistics at Ohio State University.

An Introduction to Copulas

An Introduction to Copulas PDF Author: Roger B. Nelsen
Publisher: Springer Science & Business Media
ISBN: 9780387986234
Category : Business & Economics
Languages : en
Pages : 236

Get Book Here

Book Description
The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions.

Bayesian Learning for Neural Networks

Bayesian Learning for Neural Networks PDF Author: Radford M. Neal
Publisher: Springer Science & Business Media
ISBN: 1461207452
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.

Stochastic Population Models

Stochastic Population Models PDF Author: James H. Matis
Publisher: Springer Science & Business Media
ISBN: 1461212448
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
The book focuses on stochastic modeling of population processes. The book presents new symbolic mathematical software to develop practical methodological tools for stochastic population modeling. The book assumes calculus and some knowledge of mathematical modeling, including the use of differential equations and matrix algebra.

Topics in Optimal Design

Topics in Optimal Design PDF Author: Erkki P. Liski
Publisher: Springer Science & Business Media
ISBN: 1461300495
Category : Mathematics
Languages : en
Pages : 173

Get Book Here

Book Description
This book covers a wide range of topics in both discrete and continuous optimal designs. The topics discussed include designs for regression models, covariates models, models with trend effects, and models with competition effects. The prerequisites are a basic course in the design and analysis of experiments and some familiarity with the concepts of optimality criteria.

Case studies in Bayesian statistics. 6 (2002)

Case studies in Bayesian statistics. 6 (2002) PDF Author: Constantine Gatsonis
Publisher: Springer Science & Business Media
ISBN: 9780387954721
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
This volume contains invited case studies with the accompanying discussion as well as contributed papers selected by a refereeing process of 6th Workshop on Case Studies in Bayesian Statistics was held at the Carnegie Mellon University in October, 2001.