Application of Symmetric Spaces and Lie Triple Systems in Numerical Analysis

Application of Symmetric Spaces and Lie Triple Systems in Numerical Analysis PDF Author: Hans Munthe-Kaas
Publisher:
ISBN:
Category :
Languages : en
Pages : 42

Get Book Here

Book Description

Application of Symmetric Spaces and Lie Triple Systems in Numerical Analysis

Application of Symmetric Spaces and Lie Triple Systems in Numerical Analysis PDF Author: Hans Munthe-Kaas
Publisher:
ISBN:
Category :
Languages : en
Pages : 42

Get Book Here

Book Description


Groups and Geometric Analysis

Groups and Geometric Analysis PDF Author: Sigurdur Helgason
Publisher: American Mathematical Society
ISBN: 0821832115
Category : Mathematics
Languages : en
Pages : 667

Get Book Here

Book Description
Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.

Foundations of Computational Mathematics

Foundations of Computational Mathematics PDF Author: Ronald A. DeVore
Publisher: Cambridge University Press
ISBN: 9780521003490
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Collection of papers by leading researchers in computational mathematics, suitable for graduate students and researchers.

CONTROLO 2020

CONTROLO 2020 PDF Author: José Alexandre Gonçalves
Publisher: Springer Nature
ISBN: 3030586537
Category : Technology & Engineering
Languages : en
Pages : 810

Get Book Here

Book Description
This book offers a timely and comprehensive snapshot of research and developments in the field of control engineering. Covering a wide range of theoretical and practical issues, the contributions describes a number of different control approaches, such adaptive control, fuzzy and neuro-fuzzy control, remote and robust control systems, real time an fault tolerant control, among others. Sensors and actuators, measurement systems, renewable energy systems, aerospace systems as well as industrial control and automation, are also comprehensively covered. Based on the proceedings of the 14th APCA International Conference on Automatic Control and Soft Computing, held on July 1-3, 2020, in Bragança, Portugal, the book offers a timely and thoroughly survey of the latest research in the field of control, and a source of inspiration for researchers and professionals worldwide.

Jordan Triple Systems in Complex and Functional Analysis

Jordan Triple Systems in Complex and Functional Analysis PDF Author: José M. Isidro
Publisher: American Mathematical Soc.
ISBN: 1470450836
Category : Education
Languages : en
Pages : 577

Get Book Here

Book Description
This book is a systematic account of the impressive developments in the theory of symmetric manifolds achieved over the past 50 years. It contains detailed and friendly, but rigorous, proofs of the key results in the theory. Milestones are the study of the group of holomomorphic automorphisms of bounded domains in a complex Banach space (Vigué and Upmeier in the late 1970s), Kaup's theorem on the equivalence of the categories of symmetric Banach manifolds and that of hermitian Jordan triple systems, and the culminating point in the process: the Riemann mapping theorem for complex Banach spaces (Kaup, 1982). This led to the introduction of wide classes of Banach spaces known as JB∗-triples and JBW∗-triples whose geometry has been thoroughly studied by several outstanding mathematicians in the late 1980s. The book presents a good example of fruitful interaction between different branches of mathematics, making it attractive for mathematicians interested in various fields such as algebra, differential geometry and, of course, complex and functional analysis.

Differential Geometry, Lie Groups, and Symmetric Spaces

Differential Geometry, Lie Groups, and Symmetric Spaces PDF Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
ISBN: 0821828487
Category : Mathematics
Languages : en
Pages : 682

Get Book Here

Book Description
A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.

Causal Symmetric Spaces

Causal Symmetric Spaces PDF Author: Gestur Olafsson
Publisher: Academic Press
ISBN: 0080528724
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

Symmetric Spaces and the Kashiwara-Vergne Method

Symmetric Spaces and the Kashiwara-Vergne Method PDF Author: François Rouvière
Publisher: Springer
ISBN: 3319097733
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian's recent proofs of the conjecture. The chapters are largely independent of each other. Some open problems are suggested to encourage future research. It is aimed at graduate students and researchers with a basic knowledge of Lie theory.

Lie Groups, Physics, and Geometry

Lie Groups, Physics, and Geometry PDF Author: Robert Gilmore
Publisher: Cambridge University Press
ISBN: 113946907X
Category : Science
Languages : en
Pages : 5

Get Book Here

Book Description
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.

Stochastic Analysis, Control, Optimization and Applications

Stochastic Analysis, Control, Optimization and Applications PDF Author: William M. McEneaney
Publisher: Springer Science & Business Media
ISBN: 1461217849
Category : Technology & Engineering
Languages : en
Pages : 660

Get Book Here

Book Description
In view of Professor Wendell Fleming's many fundamental contributions, his profound influence on the mathematical and systems theory communi ties, his service to the profession, and his dedication to mathematics, we have invited a number of leading experts in the fields of control, optimiza tion, and stochastic systems to contribute to this volume in his honor on the occasion of his 70th birthday. These papers focus on various aspects of stochastic analysis, control theory and optimization, and applications. They include authoritative expositions and surveys as well as research papers on recent and important issues. The papers are grouped according to the following four major themes: (1) large deviations, risk sensitive and Hoc control, (2) partial differential equations and viscosity solutions, (3) stochastic control, filtering and parameter esti mation, and (4) mathematical finance and other applications. We express our deep gratitude to all of the authors for their invaluable contributions, and to the referees for their careful and timely reviews. We thank Harold Kushner for having graciously agreed to undertake the task of writing the foreword. Particular thanks go to H. Thomas Banks for his help, advice and suggestions during the entire preparation process, as well as for the generous support of the Center for Research in Scientific Computation. The assistance from the Birkhauser professional staff is also greatly appreciated.