Application of Epitaxial Graphene Layers on Silicon Carbide in the Technology of Semiconductor Devices

Application of Epitaxial Graphene Layers on Silicon Carbide in the Technology of Semiconductor Devices PDF Author: Tymoteusz Ciuk
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Application of Epitaxial Graphene Layers on Silicon Carbide in the Technology of Semiconductor Devices

Application of Epitaxial Graphene Layers on Silicon Carbide in the Technology of Semiconductor Devices PDF Author: Tymoteusz Ciuk
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Epitaxial Graphene on Silicon Carbide

Epitaxial Graphene on Silicon Carbide PDF Author: Gemma Rius
Publisher: CRC Press
ISBN: 1351736213
Category : Science
Languages : en
Pages : 311

Get Book Here

Book Description
This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.

Growing Graphene on Semiconductors

Growing Graphene on Semiconductors PDF Author: Nunzio Motta
Publisher: CRC Press
ISBN: 1351736256
Category : Science
Languages : en
Pages : 218

Get Book Here

Book Description
Graphene, the wonder material of the 21st century, is expected to play an important role in future nanoelectronic applications, but the only way to achieve this goal is to grow graphene directly on a semiconductor, integrating it in the chain for the production of electronic circuits and devices. This book summarizes the latest achievements in this field, with particular attention to the graphitization of SiC. Through high-temperature annealing in a controlled environment, it is possible to decompose the topmost SiC layers, obtaining quasi-ideal graphene by Si sublimation with record electronic mobilities, while selective growth on patterned structures makes possible the opening of a gap by quantum confinement. The book starts with a review chapter on the significance and challenges of graphene growth on semiconductors, followed by three chapters dedicated to an up-to-date analysis of the synthesis of graphene in ultrahigh vacuum, and concludes with two chapters discussing possible ways of tailoring the electronic band structure of epitaxial graphene by atomic intercalation and of creating a gap by the growth of templated graphene nanostructures.

2-D Electronic Materials

2-D Electronic Materials PDF Author: Dorr Oliver Campbell
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Get Book Here

Book Description
Graphene holds great promise as a material for high-speed electronics, especially as Si technology approaches its performance limits. Growth of epitaxial graphene by thermal decomposition of SiC is considered to be one of the most promising production routes since it has the potential to produce homogenous, wafer-size films directly on a semi-insulating or semiconducting substrate. Furthermore, graphene's planar 2-D structure enables devices and circuit designs with standard top-down lithography and processing techniques. However, the growth mechanism of graphene on SiC is not very well understood and much work remains to be done to improve the morphology, domain size and epitaxial quality of the grown graphene in order to take advantage of the unique properties of the material. This research work was aimed at using a modified CVD chamber in the Cornell University Wide-Bandgap-Semiconductor Laboratory to optimize the growth of epitaxial graphene by controlled decomposition of 6H-SiC(0001) in an argon mediated gas flow at near atmospheric pressure. Grown films were characterized using Raman spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and electrical measurements. Uniform large-area monolayer and few-layer epitaxial graphene were successfully grown on SiC terraces of up to 8 [MICRO SIGN]m wide, and with Hall mobilities of up to 840 cm2/V.s. The as-grown graphene was found to be intrinsically electron doped with sheet carrier density in the range of 3 - 9 x 1012 cm-2. However, certain growth features that tended to disrupt growth by uniform step flow decomposition were observed. These included deep rounded pits at higher temperatures, shallow triangular pits, arrow-like incursions across terraces, finger growths, residual SiC islands on terraces, nucleation of graphene at multiple defect points on terraces, and extra graphene layers at step edges. Further research is required to determine the mechanisms of formation of these features and to determine how they can be eliminated or reduced. For the first time SiC grown epitaxial graphene films, transferred from the substrate by a special process, was imaged in plan-view by TEM. The TEM images, along with selected-area electron diffraction, showed that a bilayer film had the AB Bernal stacking.!

Advancing Silicon Carbide Electronics Technology I

Advancing Silicon Carbide Electronics Technology I PDF Author: Konstantinos Zekentes
Publisher: Materials Research Forum LLC
ISBN: 1945291850
Category : Technology & Engineering
Languages : en
Pages : 249

Get Book Here

Book Description
The rapidly advancing Silicon Carbide technology has a great potential in high temperature and high frequency electronics. High thermal stability and outstanding chemical inertness make SiC an excellent material for high-power, low-loss semiconductor devices. The present volume presents the state of the art of SiC device fabrication and characterization. Topics covered include: SiC surface cleaning and etching techniques; electrical characterization methods and processing of ohmic contacts to silicon carbide; analysis of contact resistivity dependence on material properties; limitations and accuracy of contact resistivity measurements; ohmic contact fabrication and test structure design; overview of different metallization schemes and processing technologies; thermal stability of ohmic contacts to SiC, their protection and compatibility with device processing; Schottky contacts to SiC; Schottky barrier formation; Schottky barrier inhomogeneity in SiC materials; technology and design of 4H-SiC Schottky and Junction Barrier Schottky diodes; Si/SiC heterojunction diodes; applications of SiC Schottky diodes in power electronics and temperature/light sensors; high power SiC unipolar and bipolar switching devices; different types of SiC devices including material and technology constraints on device performance; applications in the area of metal contacts to silicon carbide; status and prospects of SiC power devices.

Silicon Carbide Biotechnology

Silicon Carbide Biotechnology PDF Author: Stephen E. Saddow
Publisher: Elsevier
ISBN: 0123859077
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices

Epitaxial Graphene on Silicon Carbide

Epitaxial Graphene on Silicon Carbide PDF Author: Gemma Rius
Publisher: CRC Press
ISBN: 1351736221
Category : Science
Languages : en
Pages : 248

Get Book Here

Book Description
This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.

Characterization of Selective Epitaxial Graphene Growth on Silicon Carbide

Characterization of Selective Epitaxial Graphene Growth on Silicon Carbide PDF Author: Farhana Zaman
Publisher:
ISBN:
Category : Epitaxy
Languages : en
Pages :

Get Book Here

Book Description
The need for post-CMOS nanoelectronics has led to the investigation of innovative device structures and materials. Graphene, a zero bandgap semiconductor with ballistic transport properties, has great potential to extend diversification and miniaturization beyond the limits of CMOS. The goal of this work is to study the growth of graphene on SiC using the novel method of selective graphitization. The major contributions of this research are as follows - First, epitaxial graphene is successfully grown on selected regions of SiC not capped by AlN deposited by molecular beam epitaxy. This contribution enables the formation of electronic-grade graphene in desired patterns without having to etch the graphene or expose it to any detrimental contact with external chemicals. Etching of AlN opens up windows to the SiC in desirable patterns for subsequent graphitization without leaving etch-residues (determined by XPS). Second, the impact of process parameters on the growth of graphene is investigated. Temperature, time, and argon pressure are the primary growth-conditions altered. A temperature of 1400oC in 1 mbar argon for 20 min produced the most optimal graphene growth without significant damage to the AlN capping-layer. Third, first-ever electronic transport measurements are achieved on the selective epitaxial graphene. Hall mobility of about 1550 cm2/Vs has been obtained to date. Finally, the critical limitations of the selective epitaxial graphene growth are enumerated. The advent of enhanced processing techniques that will overcome these limitations will create a multitude of opportunities for applications for graphene grown in this manner. It is envisaged to be a viable approach to fabrication of radio-frequency field-effect transistors.

Silicon Carbide and Related Materials 2017

Silicon Carbide and Related Materials 2017 PDF Author: Robert Stahlbush
Publisher: Trans Tech Publications Ltd
ISBN: 3035731454
Category : Technology & Engineering
Languages : en
Pages : 1042

Get Book Here

Book Description
ICSCRM 2017 Selected, peer reviewed papers from the 2017 International Conference on Silicon Carbide and Related Materials (ICSCRM 2017), September 17-22, 2017, Washington, DC, USA

Handbook of Silicon Carbide Materials and Devices

Handbook of Silicon Carbide Materials and Devices PDF Author: Zhe Chuan Feng
Publisher: CRC Press
ISBN: 0429583958
Category : Science
Languages : en
Pages : 465

Get Book Here

Book Description
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, Raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, Raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.