Author: Sören Bartels
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394
Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Numerical Methods for Nonlinear Partial Differential Equations
Solving Nonlinear Partial Differential Equations with Maple and Mathematica
Author: Inna Shingareva
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Analytic Methods for Partial Differential Equations
Author: G. Evans
Publisher: Springer Science & Business Media
ISBN: 1447103793
Category : Mathematics
Languages : en
Pages : 308
Book Description
This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.
Publisher: Springer Science & Business Media
ISBN: 1447103793
Category : Mathematics
Languages : en
Pages : 308
Book Description
This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.
Analytical Techniques for Solving Nonlinear Partial Differential Equations
Author: Daniel J. Arrigo
Publisher: Springer Nature
ISBN: 3031024176
Category : Mathematics
Languages : en
Pages : 151
Book Description
This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, the reader is introduced to techniques used to obtain exact solutions of NPDEs. The chapters include the following topics: Compatibility, Differential Substitutions, Point and Contact Transformations, First Integrals, and Functional Separability. The reader is guided through these chapters and is provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for a second course in PDEs (typically found in both science and engineering programs) and has been used at the University of Central Arkansas for more than ten years.
Publisher: Springer Nature
ISBN: 3031024176
Category : Mathematics
Languages : en
Pages : 151
Book Description
This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, the reader is introduced to techniques used to obtain exact solutions of NPDEs. The chapters include the following topics: Compatibility, Differential Substitutions, Point and Contact Transformations, First Integrals, and Functional Separability. The reader is guided through these chapters and is provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for a second course in PDEs (typically found in both science and engineering programs) and has been used at the University of Central Arkansas for more than ten years.
Handbook of Nonlinear Partial Differential Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1135440816
Category : Mathematics
Languages : en
Pages : 835
Book Description
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
Publisher: CRC Press
ISBN: 1135440816
Category : Mathematics
Languages : en
Pages : 835
Book Description
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
Nonlinear Partial Differential Equations
Author: Mi-Ho Giga
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307
Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307
Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.
Methods for Constructing Exact Solutions of Partial Differential Equations
Author: Sergey V. Meleshko
Publisher: Springer Science & Business Media
ISBN: 0387252657
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.
Publisher: Springer Science & Business Media
ISBN: 0387252657
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.
Analytical Techniques for Solving Nonlinear Partial Differential Equations
Author: Daniel J. Arrigo
Publisher: Springer
ISBN: 9783031012891
Category : Mathematics
Languages : en
Pages : 151
Book Description
This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, the reader is introduced to techniques used to obtain exact solutions of NPDEs. The chapters include the following topics: Compatibility, Differential Substitutions, Point and Contact Transformations, First Integrals, and Functional Separability. The reader is guided through these chapters and is provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for a second course in PDEs (typically found in both science and engineering programs) and has been used at the University of Central Arkansas for more than ten years.
Publisher: Springer
ISBN: 9783031012891
Category : Mathematics
Languages : en
Pages : 151
Book Description
This is an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, the reader is introduced to techniques used to obtain exact solutions of NPDEs. The chapters include the following topics: Compatibility, Differential Substitutions, Point and Contact Transformations, First Integrals, and Functional Separability. The reader is guided through these chapters and is provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter. The book can be used as a textbook for a second course in PDEs (typically found in both science and engineering programs) and has been used at the University of Central Arkansas for more than ten years.
Partial Differential Equations
Author: Victor Henner
Publisher: CRC Press
ISBN: 0429804415
Category : Mathematics
Languages : en
Pages : 462
Book Description
Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners’ course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The "teaching-by-examples" approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book’s level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text’s flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text’s graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently
Publisher: CRC Press
ISBN: 0429804415
Category : Mathematics
Languages : en
Pages : 462
Book Description
Partial Differential Equations: Analytical Methods and Applications covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners’ course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of it rigor. This text introduces and promotes practice of necessary problem-solving skills. The presentation is concise and friendly to the reader. The "teaching-by-examples" approach provides numerous carefully chosen examples that guide step-by-step learning of concepts and techniques. Fourier series, Sturm-Liouville problem, Fourier transform, and Laplace transform are included. The book’s level of presentation and structure is well suited for use in engineering, physics and applied mathematics courses. Highlights: Offers a complete first course on PDEs The text’s flexible structure promotes varied syllabi for courses Written with a teach-by-example approach which offers numerous examples and applications Includes additional topics such as the Sturm-Liouville problem, Fourier and Laplace transforms, and special functions The text’s graphical material makes excellent use of modern software packages Features numerous examples and applications which are suitable for readers studying the subject remotely or independently
Analytical Methods for Solving Nonlinear Partial Differential Equations
Author: Daniel Arrigo
Publisher: Springer Nature
ISBN: 3031170695
Category : Mathematics
Languages : en
Pages : 181
Book Description
This textbook provides an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, readers are introduced to techniques to obtain exact solutions of NLPDEs. The chapters include the following topics: Nonlinear PDEs are Everywhere; Differential Substitutions; Point and Contact Transformations; First Integrals; and Functional Separability. Readers are guided through these chapters and are provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter. This Second Edition includes a new method of generating contact transformations and focuses on a solution method (parametric Legendre transformations) to solve a particular class of two nonlinear PDEs.
Publisher: Springer Nature
ISBN: 3031170695
Category : Mathematics
Languages : en
Pages : 181
Book Description
This textbook provides an introduction to methods for solving nonlinear partial differential equations (NLPDEs). After the introduction of several PDEs drawn from science and engineering, readers are introduced to techniques to obtain exact solutions of NLPDEs. The chapters include the following topics: Nonlinear PDEs are Everywhere; Differential Substitutions; Point and Contact Transformations; First Integrals; and Functional Separability. Readers are guided through these chapters and are provided with several detailed examples. Each chapter ends with a series of exercises illustrating the material presented in each chapter. This Second Edition includes a new method of generating contact transformations and focuses on a solution method (parametric Legendre transformations) to solve a particular class of two nonlinear PDEs.