Author: Sören Bartels
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394
Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Numerical Methods for Nonlinear Partial Differential Equations
Author: Sören Bartels
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394
Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394
Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Nonlinear Partial Differential Equations
Author: Mi-Ho Giga
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307
Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307
Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.
Analytical Properties of Nonlinear Partial Differential Equations
Author: Alexei Cheviakov
Publisher: Springer Nature
ISBN: 3031530748
Category :
Languages : en
Pages : 322
Book Description
Publisher: Springer Nature
ISBN: 3031530748
Category :
Languages : en
Pages : 322
Book Description
Fourier Analysis and Nonlinear Partial Differential Equations
Author: Hajer Bahouri
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530
Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530
Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Partial Differential Equations
Author: Deborah E. Richards
Publisher: Nova Science Publishers
ISBN: 9781634826433
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book includes research on the Lax-Milgram theorem, which can be used to prove existence and uniqueness of weak solutions to partial differential equations and several examples of its application to relevant boundary value problems are presented. The authors also investigate nonlinear control problems for couple partial differential equations arising from climate and circulation dynamics in the equatorial zone; the integration of partial differential equations (PDE) with the help of non-commutative analysis over octonions and Cayley-Dickson algebras; and the existence and properties of solutions, applications in sequential optimal control with pointwise in time state constraints.
Publisher: Nova Science Publishers
ISBN: 9781634826433
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book includes research on the Lax-Milgram theorem, which can be used to prove existence and uniqueness of weak solutions to partial differential equations and several examples of its application to relevant boundary value problems are presented. The authors also investigate nonlinear control problems for couple partial differential equations arising from climate and circulation dynamics in the equatorial zone; the integration of partial differential equations (PDE) with the help of non-commutative analysis over octonions and Cayley-Dickson algebras; and the existence and properties of solutions, applications in sequential optimal control with pointwise in time state constraints.
Analytical Properties of Nonlinear Partial Differential Equations
Author: Alexei Cheviakov
Publisher: Springer
ISBN: 9783031530739
Category : Mathematics
Languages : en
Pages : 0
Book Description
Nonlinear partial differential equations (PDE) are at the core of mathematical modeling. In the past decades and recent years, multiple analytical methods to study various aspects of the mathematical structure of nonlinear PDEs have been developed. Those aspects include C- and S-integrability, Lagrangian and Hamiltonian formulations, equivalence transformations, local and nonlocal symmetries, conservation laws, and more. Modern computational approaches and symbolic software can be employed to systematically derive and use such properties, and where possible, construct exact and approximate solutions of nonlinear equations. This book contains a consistent overview of multiple properties of nonlinear PDEs, their relations, computation algorithms, and a uniformly presented set of examples of application of these methods to specific PDEs. Examples include both well known nonlinear PDEs and less famous systems that arise in the context of shallow water waves and far beyond. The book will beof interest to researchers and graduate students in applied mathematics, physics, and engineering, and can be used as a basis for research, study, reference, and applications.
Publisher: Springer
ISBN: 9783031530739
Category : Mathematics
Languages : en
Pages : 0
Book Description
Nonlinear partial differential equations (PDE) are at the core of mathematical modeling. In the past decades and recent years, multiple analytical methods to study various aspects of the mathematical structure of nonlinear PDEs have been developed. Those aspects include C- and S-integrability, Lagrangian and Hamiltonian formulations, equivalence transformations, local and nonlocal symmetries, conservation laws, and more. Modern computational approaches and symbolic software can be employed to systematically derive and use such properties, and where possible, construct exact and approximate solutions of nonlinear equations. This book contains a consistent overview of multiple properties of nonlinear PDEs, their relations, computation algorithms, and a uniformly presented set of examples of application of these methods to specific PDEs. Examples include both well known nonlinear PDEs and less famous systems that arise in the context of shallow water waves and far beyond. The book will beof interest to researchers and graduate students in applied mathematics, physics, and engineering, and can be used as a basis for research, study, reference, and applications.
Partial Differential Equations: Modeling, Analysis and Numerical Approximation
Author: Hervé Le Dret
Publisher: Birkhäuser
ISBN: 3319270672
Category : Mathematics
Languages : en
Pages : 403
Book Description
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.
Publisher: Birkhäuser
ISBN: 3319270672
Category : Mathematics
Languages : en
Pages : 403
Book Description
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.
New Tools for Nonlinear PDEs and Application
Author: Marcello D'Abbicco
Publisher: Springer
ISBN: 3030109372
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book features a collection of papers devoted to recent results in nonlinear partial differential equations and applications. It presents an excellent source of information on the state-of-the-art, new methods, and trends in this topic and related areas. Most of the contributors presented their work during the sessions "Recent progress in evolution equations" and "Nonlinear PDEs" at the 12th ISAAC congress held in 2017 in Växjö, Sweden. Even if inspired by this event, this book is not merely a collection of proceedings, but a stand-alone project gathering original contributions from active researchers on the latest trends in nonlinear evolution PDEs.
Publisher: Springer
ISBN: 3030109372
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book features a collection of papers devoted to recent results in nonlinear partial differential equations and applications. It presents an excellent source of information on the state-of-the-art, new methods, and trends in this topic and related areas. Most of the contributors presented their work during the sessions "Recent progress in evolution equations" and "Nonlinear PDEs" at the 12th ISAAC congress held in 2017 in Växjö, Sweden. Even if inspired by this event, this book is not merely a collection of proceedings, but a stand-alone project gathering original contributions from active researchers on the latest trends in nonlinear evolution PDEs.
Analytical Properties of Nonlinear Partial Differential Equations
Author: Alexei F. Cheviakov
Publisher:
ISBN: 9783031530760
Category : Biomathematics
Languages : en
Pages : 0
Book Description
Nonlinear partial differential equations (PDE) are at the core of mathematical modeling. In the past decades and recent years, multiple analytical methods to study various aspects of the mathematical structure of nonlinear PDEs have been developed. Those aspects include C- and S-integrability, Lagrangian and Hamiltonian formulations, equivalence transformations, local and nonlocal symmetries, conservation laws, and more. Modern computational approaches and symbolic software can be employed to systematically derive and use such properties, and where possible, construct exact and approximate solutions of nonlinear equations. This book contains a consistent overview of multiple properties of nonlinear PDEs, their relations, computation algorithms, and a uniformly presented set of examples of application of these methods to specific PDEs. Examples include both well known nonlinear PDEs and less famous systems that arise in the context of shallow water waves and far beyond. The book will be of interest to researchers and graduate students in applied mathematics, physics, and engineering, and can be used as a basis for research, study, reference, and applications.
Publisher:
ISBN: 9783031530760
Category : Biomathematics
Languages : en
Pages : 0
Book Description
Nonlinear partial differential equations (PDE) are at the core of mathematical modeling. In the past decades and recent years, multiple analytical methods to study various aspects of the mathematical structure of nonlinear PDEs have been developed. Those aspects include C- and S-integrability, Lagrangian and Hamiltonian formulations, equivalence transformations, local and nonlocal symmetries, conservation laws, and more. Modern computational approaches and symbolic software can be employed to systematically derive and use such properties, and where possible, construct exact and approximate solutions of nonlinear equations. This book contains a consistent overview of multiple properties of nonlinear PDEs, their relations, computation algorithms, and a uniformly presented set of examples of application of these methods to specific PDEs. Examples include both well known nonlinear PDEs and less famous systems that arise in the context of shallow water waves and far beyond. The book will be of interest to researchers and graduate students in applied mathematics, physics, and engineering, and can be used as a basis for research, study, reference, and applications.
Geometric Analysis and Nonlinear Partial Differential Equations
Author: Stefan Hildebrandt
Publisher: Springer Science & Business Media
ISBN: 3642556272
Category : Mathematics
Languages : en
Pages : 663
Book Description
This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.
Publisher: Springer Science & Business Media
ISBN: 3642556272
Category : Mathematics
Languages : en
Pages : 663
Book Description
This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.