Analytic Hyperbolic Geometry

Analytic Hyperbolic Geometry PDF Author: Abraham A. Ungar
Publisher: World Scientific
ISBN: 9812703276
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. In the resulting "gyrolanguage" of the book, one attaches the prefix "gyro" to a classical term to mean the analogous term in hyperbolic geometry. The book begins with the definition of gyrogroups, which is fully analogous to the definition of groups. Gyrogroups, both gyrocommutative and nongyrocommutative, abound in group theory. Surprisingly, the seemingly structureless Einstein velocity addition of special relativity turns out to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, some gyrocommutative gyrogroups of gyrovectors become gyrovector spaces. The latter, in turn, form the setting for analytic hyperbolic geometry just as vector spaces form the setting for analytic Euclidean geometry. By hybrid techniques of differential geometry and gyrovector spaces, it is shown that Einstein (Mobius) gyrovector spaces form the setting for Beltrami-Klein (Poincare) ball models of hyperbolic geometry. Finally, novel applications of Mobius gyrovector spaces in quantum computation, and of Einstein gyrovector spaces in special relativity, are presented.

Analytic Hyperbolic Geometry

Analytic Hyperbolic Geometry PDF Author: Abraham A. Ungar
Publisher: World Scientific
ISBN: 9812703276
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. In the resulting "gyrolanguage" of the book, one attaches the prefix "gyro" to a classical term to mean the analogous term in hyperbolic geometry. The book begins with the definition of gyrogroups, which is fully analogous to the definition of groups. Gyrogroups, both gyrocommutative and nongyrocommutative, abound in group theory. Surprisingly, the seemingly structureless Einstein velocity addition of special relativity turns out to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, some gyrocommutative gyrogroups of gyrovectors become gyrovector spaces. The latter, in turn, form the setting for analytic hyperbolic geometry just as vector spaces form the setting for analytic Euclidean geometry. By hybrid techniques of differential geometry and gyrovector spaces, it is shown that Einstein (Mobius) gyrovector spaces form the setting for Beltrami-Klein (Poincare) ball models of hyperbolic geometry. Finally, novel applications of Mobius gyrovector spaces in quantum computation, and of Einstein gyrovector spaces in special relativity, are presented.

Analytic Hyperbolic Geometry: Mathematical Foundations And Applications

Analytic Hyperbolic Geometry: Mathematical Foundations And Applications PDF Author: Abraham Albert Ungar
Publisher: World Scientific
ISBN: 9814479594
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. Gyrovectors are equivalence classes of directed gyrosegments that add according to the gyroparallelogram law just as vectors are equivalence classes of directed segments that add according to the parallelogram law. In the resulting “gyrolanguage” of the book one attaches the prefix “gyro” to a classical term to mean the analogous term in hyperbolic geometry. The prefix stems from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Gyrolanguage turns out to be the language one needs to articulate novel analogies that the classical and the modern in this book share.The scope of analytic hyperbolic geometry that the book presents is cross-disciplinary, involving nonassociative algebra, geometry and physics. As such, it is naturally compatible with the special theory of relativity and, particularly, with the nonassociativity of Einstein velocity addition law. Along with analogies with classical results that the book emphasizes, there are remarkable disanalogies as well. Thus, for instance, unlike Euclidean triangles, the sides of a hyperbolic triangle are uniquely determined by its hyperbolic angles. Elegant formulas for calculating the hyperbolic side-lengths of a hyperbolic triangle in terms of its hyperbolic angles are presented in the book.The book begins with the definition of gyrogroups, which is fully analogous to the definition of groups. Gyrogroups, both gyrocommutative and non-gyrocommutative, abound in group theory. Surprisingly, the seemingly structureless Einstein velocity addition of special relativity turns out to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, some gyrocommutative gyrogroups of gyrovectors become gyrovector spaces. The latter, in turn, form the setting for analytic hyperbolic geometry just as vector spaces form the setting for analytic Euclidean geometry. By hybrid techniques of differential geometry and gyrovector spaces, it is shown that Einstein (Möbius) gyrovector spaces form the setting for Beltrami-Klein (Poincaré) ball models of hyperbolic geometry. Finally, novel applications of Möbius gyrovector spaces in quantum computation, and of Einstein gyrovector spaces in special relativity, are presented.

A Gyrovector Space Approach to Hyperbolic Geometry

A Gyrovector Space Approach to Hyperbolic Geometry PDF Author: Abraham Ungar
Publisher: Morgan & Claypool Publishers
ISBN: 1598298232
Category : Technology & Engineering
Languages : en
Pages : 194

Get Book Here

Book Description
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry

Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity (Second Edition)

Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity (Second Edition) PDF Author: Abraham Albert Ungar
Publisher: World Scientific
ISBN: 981124412X
Category : Mathematics
Languages : en
Pages : 775

Get Book Here

Book Description
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.

Collected Papers. Volume V

Collected Papers. Volume V PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
This volume includes 37 papers of mathematics or applied mathematics written by the author alone or in collaboration with the following co-authors: Cătălin Barbu, Mihály Bencze, Octavian Cira, Marian Niţu, Ion Pătraşcu, Mircea E. Şelariu, Rajan Alex, Xingsen Li, Tudor Păroiu, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Yingjie Tian, Mohd Anasri, Lucian Căpitanu, Valeri Kroumov, Kimihiro Okuyama, Gabriela Tonţ, A. A. Adewara, Manoj K. Chaudhary, Mukesh Kumar, Sachin Malik, Alka Mittal, Neetish Sharma, Rakesh K. Shukla, Ashish K. Singh, Jayant Singh, Rajesh Singh,V.V. Singh, Hansraj Yadav, Amit Bhaghel, Dipti Chauhan, V. Christianto, Priti Singh, and Dmitri Rabounski. They were written during the years 2010-2014, about the hyperbolic Menelaus theorem in the Poincare disc of hyperbolic geometry, and the Menelaus theorem for quadrilaterals in hyperbolic geometry, about some properties of the harmonic quadrilateral related to triangle simedians and to Apollonius circles, about Luhn prime numbers, and also about the correspondences of the eccentric mathematics of cardinal and integral functions and centric mathematics, or ordinary mathematics; there are some notes on Crittenden and Vanden Eynden's conjecture, or on new transformations, previously non-existent in traditional mathematics, that we call centric mathematics (CM), but that became possible due to the new born eccentric mathematics, and, implicitly, to the supermathematics (SM); also, about extenics, in general, and extension innovation model and knowledge management, in particular, about advanced methods for solving contradictory problems of hybrid position-force control of the movement of walking robots by applying a 2D Extension Set, or about the notion of point-set position indicator and that of point-two sets position indicator, and the navigation of mobile robots in non-stationary and nonstructured environments; about applications in statistics, such as estimators based on geometric and harmonic mean for estimating population mean using information; about Godel’s incompleteness theorem(s) and plausible implications to artificial intelligence/life and human mind, and many more.

Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity

Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity PDF Author: Abraham Albert Ungar
Publisher: World Scientific
ISBN: 9814474010
Category : Mathematics
Languages : en
Pages : 649

Get Book Here

Book Description
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. It introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors.Newtonian velocity addition is the common vector addition, which is both commutative and associative. The resulting vector spaces, in turn, form the algebraic setting for the standard model of Euclidean geometry. In full analogy, Einsteinian velocity addition is a gyrovector addition, which is both gyrocommutative and gyroassociative. The resulting gyrovector spaces, in turn, form the algebraic setting for the Beltrami-Klein ball model of the hyperbolic geometry of Bolyai and Lobachevsky. Similarly, Möbius addition gives rise to gyrovector spaces that form the algebraic setting for the Poincaré ball model of hyperbolic geometry.In full analogy with classical results, the book presents a novel relativistic interpretation of stellar aberration in terms of relativistic gyrotrigonometry and gyrovector addition. Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. The novel relativistic resultant mass of the system, concentrated at the relativistic center of mass, dictates the validity of the dark matter and the dark energy that were introduced by cosmologists as ad hoc postulates to explain cosmological observations about missing gravitational force and late-time cosmic accelerated expansion.The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying analytic hyperbolic geometry.

Essays in Mathematics and its Applications

Essays in Mathematics and its Applications PDF Author: Panos M. Pardalos
Publisher: Springer Science & Business Media
ISBN: 3642288219
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
​The volume is dedicated to Stephen Smale on the occasion of his 80th birthday.Besides his startling 1960 result of the proof of the Poincar ́e conjecture for all dimensionsgreater than or equal to five, Smale’s ground breaking contributions invarious fields in Mathematics have marked the second part of the 20th century andbeyond. Stephen Smale has done pioneering work in differential topology, globalanalysis, dynamical systems, nonlinear functional analysis, numerical analysis, theoryof computation and machine learning as well as applications in the physical andbiological sciences and economics. In sum, Stephen Smale has manifestly brokenthe barriers among the different fields of mathematics and dispelled some remainingprejudices. He is indeed a universal mathematician. Smale has been honoredwith several prizes and honorary degrees including, among others, the Fields Medal(1966), The Veblen Prize (1966), the National Medal of Science (1996) and theWolfPrize (2006/2007).

Analytic Hyperbolic Geometry in N Dimensions

Analytic Hyperbolic Geometry in N Dimensions PDF Author: Abraham Albert Ungar
Publisher: CRC Press
ISBN: 1482236672
Category : Mathematics
Languages : en
Pages : 623

Get Book Here

Book Description
The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language that sheds natural light on hyperbolic geometry and special relativity. Several authors have successfully employed the author’s gyroalgebra in their exploration for novel results. Françoise Chatelin noted in her book, and elsewhere, that the computation language of Einstein described in this book plays a universal computational role, which extends far beyond the domain of special relativity. This book will encourage researchers to use the author’s novel techniques to formulate their own results. The book provides new mathematical tools, such as hyperbolic simplexes, for the study of hyperbolic geometry in n dimensions. It also presents a new look at Einstein’s special relativity theory.

Nonlinear Analysis

Nonlinear Analysis PDF Author: Panos M. Pardalos
Publisher: Springer Science & Business Media
ISBN: 146143498X
Category : Mathematics
Languages : en
Pages : 898

Get Book Here

Book Description
The volume will consist of about 40 articles written by some very influential mathematicians of our time and will expose the latest achievements in the broad area of nonlinear analysis and its various interdisciplinary applications.

Essays in Mathematics and its Applications

Essays in Mathematics and its Applications PDF Author: Themistocles M. Rassias
Publisher: Springer
ISBN: 331931338X
Category : Mathematics
Languages : en
Pages : 659

Get Book Here

Book Description
This volume, dedicated to the eminent mathematician Vladimir Arnold, presents a collection of research and survey papers written on a large spectrum of theories and problems that have been studied or introduced by Arnold himself. Emphasis is given to topics relating to dynamical systems, stability of integrable systems, algebraic and differential topology, global analysis, singularity theory and classical mechanics. A number of applications of Arnold’s groundbreaking work are presented. This publication will assist graduate students and research mathematicians in acquiring an in-depth understanding and insight into a wide domain of research of an interdisciplinary nature.