Analytic Functions

Analytic Functions PDF Author: Rolf Nevanlinna
Publisher: Springer
ISBN: 3642855903
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
The present monograph on analytic functions coincides to a lar[extent with the presentation of the modern theory of single-value analytic functions given in my earlier works "Le theoreme de Picarc Borel et la theorie des fonctions meromorphes" (Paris: Gauthier-Villar 1929) and "Eindeutige analytische Funktionen" (Die Grundlehren dt mathematischen Wissenschaften in Einzeldarstellungen, VoL 46, 1: edition Berlin: Springer 1936, 2nd edition Berlin-Gottingen-Heidelberg Springer 1953). In these presentations I have strived to make the individual result and their proofs readily understandable and to treat them in the ligh of certain guiding principles in a unified way. A decisive step in thi direction within the theory of entire and meromorphic functions consiste- in replacing the classical representation of these functions through ca nonical products with more general tools from the potential theor (Green's formula and especially the Poisson-Jensen formula). On thi foundation it was possible to introduce the quantities (the characteristic the proximity and the counting functions) which are definitive for th

Analytic Functions of Several Complex Variables

Analytic Functions of Several Complex Variables PDF Author: Robert C. Gunning
Publisher: American Mathematical Society
ISBN: 1470470667
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. After initial successes by Poincaré and others in the late 19th and early 20th centuries, the theory encountered obstacles that prevented it from growing quickly into an analogue of the theory for functions of one complex variable. Beginning in the 1930s, initially through the work of Oka, then H. Cartan, and continuing with the work of Grauert, Remmert, and others, new tools were introduced into the theory of several complex variables that resolved many of the open problems and fundamentally changed the landscape of the subject. These tools included a central role for sheaf theory and increased uses of topology and algebra. The book by Gunning and Rossi was the first of the modern era of the theory of several complex variables, which is distinguished by the use of these methods. The intention of Gunning and Rossi's book is to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces. Fundamental concepts and techniques are discussed as early as possible. The first chapter covers material suitable for a one-semester graduate course, presenting many of the central problems and techniques, often in special cases. The later chapters give more detailed expositions of sheaf theory for analytic functions and the theory of complex analytic spaces. Since its original publication, this book has become a classic resource for the modern approach to functions of several complex variables and the theory of analytic spaces. Further information about this book, including updates, can be found at the following URL: www.ams.org/publications/authors/books/postpub/chel-368.

A Primer of Real Analytic Functions

A Primer of Real Analytic Functions PDF Author: KRANTZ
Publisher: Birkhäuser
ISBN: 3034876440
Category : Science
Languages : en
Pages : 190

Get Book Here

Book Description
The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.

Elementary Theory of Analytic Functions of One or Several Complex Variables

Elementary Theory of Analytic Functions of One or Several Complex Variables PDF Author: Henri Cartan
Publisher: Courier Corporation
ISBN: 0486318672
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.

Bounded Analytic Functions

Bounded Analytic Functions PDF Author: John Garnett
Publisher: Springer Science & Business Media
ISBN: 0387497633
Category : Mathematics
Languages : en
Pages : 471

Get Book Here

Book Description
This book is an account of the theory of Hardy spaces in one dimension, with emphasis on some of the exciting developments of the past two decades or so. The last seven of the ten chapters are devoted in the main to these recent developments. The motif of the theory of Hardy spaces is the interplay between real, complex, and abstract analysis. While paying proper attention to each of the three aspects, the author has underscored the effectiveness of the methods coming from real analysis, many of them developed as part of a program to extend the theory to Euclidean spaces, where the complex methods are not available.

Analytic Functions

Analytic Functions PDF Author: M.A. Evgrafov
Publisher: Courier Dover Publications
ISBN: 0486837602
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
This highly regarded text is directed toward advanced undergraduates and graduate students in mathematics who are interested in developing a firm foundation in the theory of functions of a complex variable. The treatment departs from traditional presentations in its early development of a rigorous discussion of the theory of multiple-valued analytic functions on the basis of analytic continuation. Thus it offers an early introduction of Riemann surfaces, conformal mapping, and the applications of residue theory. M. A. Evgrafov focuses on aspects of the theory that relate to modern research and assumes an acquaintance with the basics of mathematical analysis derived from a year of advanced calculus. Starting with an introductory chapter containing the fundamental results concerning limits, continuity, and integrals, the book addresses analytic functions and their properties, multiple-valued analytic functions, singular points and expansion in series, the Laplace transform, harmonic and subharmonic functions, extremal problems and distribution of values, and other subjects. Chapters are largely self-contained, making this volume equally suitable for the classroom or independent study.

Interpolation and Sampling in Spaces of Analytic Functions

Interpolation and Sampling in Spaces of Analytic Functions PDF Author: Kristian Seip
Publisher: American Mathematical Soc.
ISBN: 0821835548
Category : Mathematics
Languages : en
Pages : 153

Get Book Here

Book Description
Based on a series of six lectures given by the author at the University of Michigan, this book is intended as an introduction to the topic of interpolation and sampling in analytic function spaces. The three major topics covered are Nevanlinna-Pick interpolation, Carleson's interpolation theorem, an

Zeros of Gaussian Analytic Functions and Determinantal Point Processes

Zeros of Gaussian Analytic Functions and Determinantal Point Processes PDF Author: John Ben Hough
Publisher: American Mathematical Soc.
ISBN: 0821843737
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
Examines in some depth two important classes of point processes, determinantal processes and 'Gaussian zeros', i.e., zeros of random analytic functions with Gaussian coefficients. This title presents a primer on modern techniques on the interface of probability and analysis.

From Divergent Power Series to Analytic Functions

From Divergent Power Series to Analytic Functions PDF Author: Werner Balser
Publisher: Springer
ISBN: 3540485945
Category : Mathematics
Languages : en
Pages : 117

Get Book Here

Book Description
Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients.

An Introduction to Analytic Functions

An Introduction to Analytic Functions PDF Author: John Sheridan Mac Nerney
Publisher: Springer Nature
ISBN: 303042085X
Category : Mathematics
Languages : en
Pages : 96

Get Book Here

Book Description
When first published in 1959, this book was the basis of a two-semester course in complex analysis for upper undergraduate and graduate students. J. S. Mac Nerney was a proponent of the Socratic, or “do-it-yourself” method of learning mathematics, in which students are encouraged to engage in mathematical problem solving, including theorems at every level which are often regarded as “too difficult” for students to prove for themselves. Accordingly, Mac Nerney provides no proofs. What he does instead is to compose and arrange the investigation in his own unique style, so that a contextual proof is always available to the persistent student who enjoys a challenge. The central idea is to empower students by allowing them to discover and rely on their own mathematical abilities. This text may be used in a variety of settings, including: the usual classroom or seminar, but with the teacher acting mainly as a moderator while the students present their discoveries, a small-group setting in which the students present their discoveries to each other, and independent study. The Editors, William E. Kaufman (who was Mac Nerney’s last PhD student) and Ryan C. Schwiebert, have composed the original typed Work into LaTeX ; they have updated the notation, terminology, and some of the prose for modern usage, but the organization of content has been strictly preserved. About this Book, some new exercises, and an index have also been added.