Analytic D-Modules and Applications

Analytic D-Modules and Applications PDF Author: Jan-Erik Björk
Publisher: Springer Science & Business Media
ISBN: 9401707170
Category : Mathematics
Languages : en
Pages : 588

Get Book Here

Book Description
This is the first monograph to be published on analytic D-modules and it offers a complete and systematic treatment of the foundations together with a thorough discussion of such modern topics as the Riemann--Hilbert correspondence, Bernstein--Sata polynomials and a large variety of results concerning microdifferential analysis. Analytic D-module theory studies holomorphic differential systems on complex manifolds. It brings new insight and methods into many areas, such as infinite dimensional representations of Lie groups, asymptotic expansions of hypergeometric functions, intersection cohomology on Kahler manifolds and the calculus of residues in several complex variables. The book contains seven chapters and has an extensive appendix which is devoted to the most important tools which are used in D-module theory. This includes an account of sheaf theory in the context of derived categories, a detailed study of filtered non-commutative rings and homological algebra, and the basic material in symplectic geometry and stratifications on complex analytic sets. For graduate students and researchers.

Analytic D-Modules and Applications

Analytic D-Modules and Applications PDF Author: Jan-Erik Björk
Publisher: Springer Science & Business Media
ISBN: 9401707170
Category : Mathematics
Languages : en
Pages : 588

Get Book Here

Book Description
This is the first monograph to be published on analytic D-modules and it offers a complete and systematic treatment of the foundations together with a thorough discussion of such modern topics as the Riemann--Hilbert correspondence, Bernstein--Sata polynomials and a large variety of results concerning microdifferential analysis. Analytic D-module theory studies holomorphic differential systems on complex manifolds. It brings new insight and methods into many areas, such as infinite dimensional representations of Lie groups, asymptotic expansions of hypergeometric functions, intersection cohomology on Kahler manifolds and the calculus of residues in several complex variables. The book contains seven chapters and has an extensive appendix which is devoted to the most important tools which are used in D-module theory. This includes an account of sheaf theory in the context of derived categories, a detailed study of filtered non-commutative rings and homological algebra, and the basic material in symplectic geometry and stratifications on complex analytic sets. For graduate students and researchers.

D-Modules, Perverse Sheaves, and Representation Theory

D-Modules, Perverse Sheaves, and Representation Theory PDF Author: Ryoshi Hotta
Publisher: Springer Science & Business Media
ISBN: 081764363X
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.

The Heart of Cohomology

The Heart of Cohomology PDF Author: Goro Kato
Publisher: Springer Science & Business Media
ISBN: 1402050364
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
If you have not heard about cohomology, The Heart of Cohomology may be suited for you. The book gives Fundamental notions in cohomology for examples, functors, representable functors, Yoneda embedding, derived functors, spectral sequences, derived categories are explained in elementary fashion. Applications to sheaf cohomology. In addition, the book examines cohomological aspects of D-modules and of the computation of zeta functions of the Weierstrass family.

A Primer of Algebraic D-Modules

A Primer of Algebraic D-Modules PDF Author: S. C. Coutinho
Publisher: Cambridge University Press
ISBN: 0521551196
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.

Geometric Aspects of Dwork Theory

Geometric Aspects of Dwork Theory PDF Author: Alan Adolphson
Publisher: Walter de Gruyter
ISBN: 3110198134
Category : Mathematics
Languages : en
Pages : 1150

Get Book Here

Book Description
This two-volume book collects the lectures given during the three months cycle of lectures held in Northern Italy between May and July of 2001 to commemorate Professor Bernard Dwork (1923 - 1998). It presents a wide-ranging overview of some of the most active areas of contemporary research in arithmetic algebraic geometry, with special emphasis on the geometric applications of the p-adic analytic techniques originating in Dwork's work, their connection to various recent cohomology theories and to modular forms. The two volumes contain both important new research and illuminating survey articles written by leading experts in the field. The book will provide an indispensable resource for all those wishing to approach the frontiers of research in arithmetic algebraic geometry.

Commutative Algebra and its Interactions to Algebraic Geometry

Commutative Algebra and its Interactions to Algebraic Geometry PDF Author: Nguyen Tu CUONG
Publisher: Springer
ISBN: 331975565X
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
This book presents four lectures on recent research in commutative algebra and its applications to algebraic geometry. Aimed at researchers and graduate students with an advanced background in algebra, these lectures were given during the Commutative Algebra program held at the Vietnam Institute of Advanced Study in Mathematics in the winter semester 2013 -2014. The first lecture is on Weyl algebras (certain rings of differential operators) and their D-modules, relating non-commutative and commutative algebra to algebraic geometry and analysis in a very appealing way. The second lecture concerns local systems, their homological origin, and applications to the classification of Artinian Gorenstein rings and the computation of their invariants. The third lecture is on the representation type of projective varieties and the classification of arithmetically Cohen -Macaulay bundles and Ulrich bundles. Related topics such as moduli spaces of sheaves, liaison theory, minimal resolutions, and Hilbert schemes of points are also covered. The last lecture addresses a classical problem: how many equations are needed to define an algebraic variety set-theoretically? It systematically covers (and improves) recent results for the case of toric varieties.

Lectures on Tensor Categories and Modular Functors

Lectures on Tensor Categories and Modular Functors PDF Author: Bojko Bakalov
Publisher: American Mathematical Soc.
ISBN: 0821826867
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.

Quantitative Tamarkin Theory

Quantitative Tamarkin Theory PDF Author: Jun Zhang
Publisher: Springer Nature
ISBN: 3030378888
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microlocal sheaf theory accessible to a wide audience of readers interested in symplectic geometry. Much of this material has, until now, been scattered throughout the existing literature; this text finally collects that information into one convenient volume. After providing an overview of symplectic geometry, ranging from its background to modern developments, the author reviews the preliminaries with precision. This refresher ensures readers are prepared for the thorough exploration of the Tamarkin category that follows. A variety of applications appear throughout, such as sheaf quantization, sheaf interleaving distance, and sheaf barcodes from projectors. An appendix offers additional perspectives by highlighting further useful topics. Quantitative Tamarkin Theory is ideal for graduate students interested in symplectic geometry who seek an accessible alternative to the algebraic analysis method. A background in algebra and differential geometry is recommended. This book is part of the "Virtual Series on Symplectic Geometry" http://www.springer.com/series/16019

D-Modules, Perverse Sheaves, and Representation Theory

D-Modules, Perverse Sheaves, and Representation Theory PDF Author: Kiyoshi Takeuchi
Publisher: Springer Science & Business Media
ISBN: 0817645233
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.

Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis

Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis PDF Author: Eric Grinberg
Publisher: American Mathematical Soc.
ISBN: 0821811487
Category : Mathematics
Languages : en
Pages : 524

Get Book Here

Book Description
This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.