Computational Methods for Single-Cell Data Analysis

Computational Methods for Single-Cell Data Analysis PDF Author: Guo-Cheng Yuan
Publisher: Humana Press
ISBN: 9781493990566
Category : Science
Languages : en
Pages : 271

Get Book Here

Book Description
This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.

Computational Methods for Single-Cell Data Analysis

Computational Methods for Single-Cell Data Analysis PDF Author: Guo-Cheng Yuan
Publisher: Humana Press
ISBN: 9781493990566
Category : Science
Languages : en
Pages : 271

Get Book Here

Book Description
This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.

High-Dimensional Single Cell Analysis

High-Dimensional Single Cell Analysis PDF Author: Harris G. Fienberg
Publisher: Springer
ISBN: 364254827X
Category : Medical
Languages : en
Pages : 224

Get Book Here

Book Description
This volume highlights the most interesting biomedical and clinical applications of high-dimensional flow and mass cytometry. It reviews current practical approaches used to perform high-dimensional experiments and addresses key bioinformatic techniques for the analysis of data sets involving dozens of parameters in millions of single cells. Topics include single cell cancer biology; studies of the human immunome; exploration of immunological cell types such as CD8+ T cells; decipherment of signaling processes of cancer; mass-tag cellular barcoding; analysis of protein interactions by proximity ligation assays; Cytobank, a platform for the analysis of cytometry data; computational analysis of high-dimensional flow cytometric data; computational deconvolution approaches for the description of intracellular signaling dynamics and hyperspectral cytometry. All 10 chapters of this book have been written by respected experts in their fields. It is an invaluable reference book for both basic and clinical researchers.

Clustering Stability

Clustering Stability PDF Author: Ulrike Von Luxburg
Publisher: Now Publishers Inc
ISBN: 1601983441
Category : Computers
Languages : en
Pages : 53

Get Book Here

Book Description
A popular method for selecting the number of clusters is based on stability arguments: one chooses the number of clusters such that the corresponding clustering results are most stable. In recent years, a series of papers has analyzed the behavior of this method from a theoretical point of view. However, the results are very technical and difficult to interpret for non-experts. In this paper we give a high-level overview about the existing literature on clustering stability. In addition to presenting the results in a slightly informal but accessible way, we relate them to each other and discuss their different implications.

Single Cell Analysis

Single Cell Analysis PDF Author: J. Paul Robinson
Publisher: Springer
ISBN: 9811044996
Category : Technology & Engineering
Languages : en
Pages : 277

Get Book Here

Book Description
This book highlights the current state of the art in single cell analysis, an area that involves many fields of science – from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.

Microfluidics for Single-Cell Analysis

Microfluidics for Single-Cell Analysis PDF Author: Jin-Ming Lin
Publisher: Springer Nature
ISBN: 9813297298
Category : Science
Languages : en
Pages : 263

Get Book Here

Book Description
This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.

RNA Bioinformatics

RNA Bioinformatics PDF Author: Ernesto Picardi
Publisher: Humana
ISBN: 9781493946440
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This volume provides an overview of RNA bioinformatics methodologies, including basic strategies to predict secondary and tertiary structures, and novel algorithms based on massive RNA sequencing. Interest in RNA bioinformatics has rapidly increased thanks to the recent high-throughput sequencing technologies allowing scientists to investigate complete transcriptomes at single nucleotide resolution. Adopting advanced computational technics, scientists are now able to conduct more in-depth studies and present them to you in this book. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and equipment, step-by-step, readily reproducible bioinformatics protocols, and key tips to avoid known pitfalls. Authoritative and practical, RNA Bioinformatics seeks to aid scientists in the further study of bioinformatics and computational biology of RNA.

RNA-seq Data Analysis

RNA-seq Data Analysis PDF Author: Eija Korpelainen
Publisher: CRC Press
ISBN: 1466595019
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
The State of the Art in Transcriptome AnalysisRNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript le

Single Cell Methods

Single Cell Methods PDF Author: Valentina Proserpio
Publisher:
ISBN: 9781493992423
Category : Cytology
Languages : en
Pages : 452

Get Book Here

Book Description
This volume provides a comprehensive overview for investigating biology at the level of individual cells. Chapters are organized into eight parts detailing a single-cell lab, single cell DNA-seq, RNA-seq, single cell proteomic and epigenetic, single cell multi-omics, single cell screening, and single cell live imaging. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Single Cell Methods: Sequencing and Proteomics aims to make each experiment easily reproducible in every lab.

Single-Cell Omics

Single-Cell Omics PDF Author: Debmalya Barh
Publisher: Academic Press
ISBN: 0128149205
Category : Medical
Languages : en
Pages : 492

Get Book Here

Book Description
Single-Cell Omics: Volume 1: Technological Advances and Applications provides the latest technological developments and applications of single-cell technologies in the field of biomedicine. In the current era of precision medicine, the single-cell omics technology is highly promising due to its potential in diagnosis, prognosis and therapeutics. Sections in the book cover single-cell omics research and applications, diverse technologies applied in the topic, such as pangenomics, metabolomics, and multi-omics of single cells, data analysis, and several applications of single-cell omics within the biomedical field, for example in cancer, metabolic and neuro diseases, immunology, pharmacogenomics, personalized medicine and reproductive health. This book is a valuable source for bioinformaticians, molecular diagnostic researchers, clinicians and members of the biomedical field who are interested in understanding more about single-cell omics and its potential for research and diagnosis. - Covers not only the technological aspects, but also the diverse applications of single cell omics in the biomedical field - Summarizes the latest progress in single cell omics and discusses potential future developments for research and diagnosis - Written by experts across the world, bringing different points-of-view and case studies to give a comprehensive overview on the topic

Unsupervised Feature Extraction Applied to Bioinformatics

Unsupervised Feature Extraction Applied to Bioinformatics PDF Author: Y-h. Taguchi
Publisher: Springer Nature
ISBN: 3030224562
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. Allows readers to analyze data sets with small samples and many features; Provides a fast algorithm, based upon linear algebra, to analyze big data; Includes several applications to multi-view data analyses, with a focus on bioinformatics.