Analysis, Evaluation, and Improvement of Performance-based Earthquake Engineering Damage and Loss Predictions

Analysis, Evaluation, and Improvement of Performance-based Earthquake Engineering Damage and Loss Predictions PDF Author: Gemma Joyce Cremen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Performance-based earthquake engineering (PBEE) has in many ways revolutionized the thinking about seismic engineering design and acceptable performance of buildings in earthquakes. It is now making its way into commercial engineering design and risk analysis practice, as engineers aim to design better-performing buildings, and holders of mortgage or insurance instruments try to better understand the risk they face from damage to associated buildings. Some parts of the calculations (e.g. structural response) have been extensively assessed and validated. There are few similar studies, however, that focus on the damage and loss predictions. The purpose of this dissertation is to address this, by analyzing, evaluating, and improving the damage and loss predictions. The specific PBEE methodology examined in this dissertation is the FEMA P-58 Seismic Performance Assessment Procedure. FEMA P-58 damage and loss predictions are analyzed, to determine how they are impacted by other parts of the calculations. Firstly, variance-based sensitivity analyses are conducted to investigate the interaction of loss predictions with different inputs to the calculations. Of the six inputs considered in the analyses, it is found that predictions of building repair cost (as a fraction of replacement value) are most sensitive to shaking intensity and building age, while building re-occupancy time predictions are most sensitive to shaking intensity and building lateral system. Secondly, a methodology is developed to quantify the impact of available structural response data from seismic instrumentation on the quality of the damage and loss predictions. The density of instrumentation examined using the methodology ranges from the case in which all floors are instrumented to that in which no floors are instrumented and simplified procedures are used to produce structural response predictions. It is found that the quality of the predictions generally improves as the density of seismic instrumentation increases, but it is not crucial for the density to be very high to achieve reasonable accuracy in both damage and loss predictions (although this may depend on the arrangement of instrumentation within a building). Loss predictions are evaluated using data observed in previous seismic events, to understand the degree to which they reflect real-life consequences of earthquakes. A methodology is developed for evaluating the ability of FEMA P-58 component-level losses to predict damage observed for groups of buildings. It is found in applications of the methodology that FEMA P-58 non-structural component-level loss predictions provide more insight into damage than variations in ground shaking between buildings. Finally, this dissertation includes a number of recommendations for improving non-structural mechanical component fragility functions and associated loss predictions used in FEMA-58 calculations. The fitting technique currently used for the functions does not converge in some cases, and the methodology used to predict anchored mechanical component losses can lead to some unexpected results, such as non-smooth variation of repair costs with anchorage capacity. An alternative statistical technique is proposed for fitting the fragility functions that mitigates the non-convergence problems when fitting and makes predictions that better align with damage observed in past events. A more intuitive methodology for predicting anchored mechanical component losses is also suggested. The findings of this dissertation help to enhance understanding of, and improve, the damage and loss predictions used in the FEMA P-58 seismic performance assessment procedure. They ultimately enable various stakeholders, such as building owners, design professionals, lenders, and insurers, to make more informed decisions about seismic risk.

Analysis, Evaluation, and Improvement of Performance-based Earthquake Engineering Damage and Loss Predictions

Analysis, Evaluation, and Improvement of Performance-based Earthquake Engineering Damage and Loss Predictions PDF Author: Gemma Joyce Cremen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Performance-based earthquake engineering (PBEE) has in many ways revolutionized the thinking about seismic engineering design and acceptable performance of buildings in earthquakes. It is now making its way into commercial engineering design and risk analysis practice, as engineers aim to design better-performing buildings, and holders of mortgage or insurance instruments try to better understand the risk they face from damage to associated buildings. Some parts of the calculations (e.g. structural response) have been extensively assessed and validated. There are few similar studies, however, that focus on the damage and loss predictions. The purpose of this dissertation is to address this, by analyzing, evaluating, and improving the damage and loss predictions. The specific PBEE methodology examined in this dissertation is the FEMA P-58 Seismic Performance Assessment Procedure. FEMA P-58 damage and loss predictions are analyzed, to determine how they are impacted by other parts of the calculations. Firstly, variance-based sensitivity analyses are conducted to investigate the interaction of loss predictions with different inputs to the calculations. Of the six inputs considered in the analyses, it is found that predictions of building repair cost (as a fraction of replacement value) are most sensitive to shaking intensity and building age, while building re-occupancy time predictions are most sensitive to shaking intensity and building lateral system. Secondly, a methodology is developed to quantify the impact of available structural response data from seismic instrumentation on the quality of the damage and loss predictions. The density of instrumentation examined using the methodology ranges from the case in which all floors are instrumented to that in which no floors are instrumented and simplified procedures are used to produce structural response predictions. It is found that the quality of the predictions generally improves as the density of seismic instrumentation increases, but it is not crucial for the density to be very high to achieve reasonable accuracy in both damage and loss predictions (although this may depend on the arrangement of instrumentation within a building). Loss predictions are evaluated using data observed in previous seismic events, to understand the degree to which they reflect real-life consequences of earthquakes. A methodology is developed for evaluating the ability of FEMA P-58 component-level losses to predict damage observed for groups of buildings. It is found in applications of the methodology that FEMA P-58 non-structural component-level loss predictions provide more insight into damage than variations in ground shaking between buildings. Finally, this dissertation includes a number of recommendations for improving non-structural mechanical component fragility functions and associated loss predictions used in FEMA-58 calculations. The fitting technique currently used for the functions does not converge in some cases, and the methodology used to predict anchored mechanical component losses can lead to some unexpected results, such as non-smooth variation of repair costs with anchorage capacity. An alternative statistical technique is proposed for fitting the fragility functions that mitigates the non-convergence problems when fitting and makes predictions that better align with damage observed in past events. A more intuitive methodology for predicting anchored mechanical component losses is also suggested. The findings of this dissertation help to enhance understanding of, and improve, the damage and loss predictions used in the FEMA P-58 seismic performance assessment procedure. They ultimately enable various stakeholders, such as building owners, design professionals, lenders, and insurers, to make more informed decisions about seismic risk.

Advances in Assessment and Modeling of Earthquake Loss

Advances in Assessment and Modeling of Earthquake Loss PDF Author: Sinan Akkar
Publisher: Springer Nature
ISBN: 3030688135
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
This open access book originates from an international workshop organized by Turkish Natural Catastrophe Insurance Pool (TCIP) in November 2019 that gathered renown researchers from academia, representatives of leading international reinsurance and modeling companies as well as government agencies responsible of insurance pricing in Turkey. The book includes chapters related to post-earthquake damage assessment, the state-of-art and novel earthquake loss modeling, their implementation and implication in insurance pricing at national, regional and global levels, and the role of earthquake insurance in building resilient societies and fire following earthquakes. The rich context encompassed in the book makes it a valuable tool not only for professionals and researchers dealing with earthquake loss modeling but also for practitioners in the insurance and reinsurance industry.

Improved Seismic Monitoring - Improved Decision-Making

Improved Seismic Monitoring - Improved Decision-Making PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309165032
Category : Science
Languages : en
Pages : 196

Get Book Here

Book Description
Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.

Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering

Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering PDF Author: National Research Council (U.S.). Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES)
Publisher: National Academy Press
ISBN:
Category : Nature
Languages : en
Pages : 200

Get Book Here

Book Description
The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.

Performance-Based Analytics-Driven Seismic Retrofit of Woodframe Buildings

Performance-Based Analytics-Driven Seismic Retrofit of Woodframe Buildings PDF Author: Zhengxiang Yi
Publisher:
ISBN:
Category :
Languages : en
Pages : 293

Get Book Here

Book Description
Woodframe construction is commonly used for single and multifamily residential buildings in the United States. In many parts of California, multifamily woodframe residential buildings are constructed with open first stories, which have much less strength and stiffness compared to the ones above. In older single-family residences, the "crawl space" is constructed with unbraced and unbolted cripple walls. Both these conditions lead to a soft-story response during seismic loading, resulting significant damage, economic losses and even collapse. This type of vulnerability is often addressed through seismic retrofits, which can be mandated by local jurisdictions (e.g., the Los Angeles Soft-Story Ordinance) or incentivized by state or local entities (e.g., the California Earthquake Authority Brace and Bolt Program). A key challenge in implementing these retrofit programs (mandated or incentivized) is quantifying the improvements in performance at the individual and portfolio scale and creating design procedures that maximize the overall benefit. This research integrates nonlinear structural modeling, performance-based assessments and advanced statistical and machine learning techniques to quantify the benefit of soft-story woodframe building retrofit and develop optimal design solutions that maximize regional performance. The considered construction types include single-family houses with unbraced cripple walls developed as part of the recently completed Pacific Earthquake Engineering Research Institute (PEER) and California Earthquake Authority (CEA) project and multi-family residences with soft, weak and open front wall lines (SWOF). An end-to-end computational platform is developed to automate the construction and analysis of archetype numerical models in OpenSees and conduct seismic evaluations based on the PEER performance-based earthquake engineering framework. The performance of existing and retrofitted buildings is assessed in terms of collapse safety and direct (due to earthquake damage) economic losses. The effect of retrofit and various structural characteristics is illuminated for the single-family cripple wall houses. 2^k full factorial experiment design combined with hypothesis testing is used to identify the most influential structural properties. Two story buildings performed worse than their one-story counterparts and pre-1945 buildings performed better than pre-1955 construction. Building performance is found to be positively correlated with cripple wall heights and cripple wall retrofits provided significant overall improvements. Surrogate models are developed as a compact statistical link between key structural characteristics and seismic performance. Several machine learning algorithms are investigated for predicting the building median collapse intensity and expected annual loss using the cripple wall height, seismic weight, damping ratio and material properties as features. The XGBoost algorithm provides the most accurate prediction and on average, limits the prediction error to less than 10%. Using the well-developed machine learning models, additional sensitivity analyses are conducted and the effect of model uncertainty on collapse safety and expected annual losses is quantified using Monte Carlo simulation. For the SWOF buildings, a multi-scale cost-benefit analysis of the Los Angeles Soft-Story Ordinance Retrofit is performed. Individual buildings take an average of four to five years for the reduced earthquake losses to exceed the one-time retrofit cost. At the portfolio-scale, the average cost-benefit ratio is found to be 0.32 for the hypothetical M 7.1 Puente Hills scenario earthquake. A stochastic event-set cost-benefit assessment is also performed, where all events (approximately 8,000) that are significant to the region are considered. From this assessment, it is determined that the probability of achieving a desirable cost-benefit ratio (value between 0.0 and 1.0) within a 50-year period is approximately 0.9. Lastly, a retrofit design optimization framework is proposed with the goal of maximizing performance-based benefits at the regional scale. The methodology relies a machine learning-based surrogate model to predict seismic performances of retrofitted buildings given the design parameters. Then, a stochastic optimization algorithm is implemented to find the retrofit designs that maximize the improvement in seismic performance for the entire portfolio under a set of pre-defined constraints. The algorithmic retrofit leads to collapse losses that are comparable to the Los Angeles Ordinance guidelines while using only 60% of the resources. The performance-oriented framework is shown to address the inefficiency of conventional strength-based retrofit policies.

Damage-Based Earthquake Engineering

Damage-Based Earthquake Engineering PDF Author: P. Ghisbain
Publisher: WIT Press
ISBN: 1784660132
Category : Technology & Engineering
Languages : en
Pages : 225

Get Book Here

Book Description
Over the life of a structure, the smaller but more frequent earthquakes contribute more to the cumulative damage than the larger earthquakes on which structural design is traditionally based. This is a quantitative argument in favour of designing structures beyond what the codes require for life-safety. This book presents a computational method to evaluate the damage sustained by a building over its lifetime in a seismic environment. The ability to estimate future damage is relevant to a pair of current trends in earthquake engineering: a growing interest for preventing damage on top of protecting the public, and development of performance-based design. The proposed method combines probabilistic principles with traditional structural analysis, which makes it readily applicable to evaluation of planned structures in an engineering office. The analytical models, computational steps and supporting data used to produce an estimate of damage are discussed, and variants of the method with different run time and accuracy are considered. As an example of application to structural design, the book proposes a method to optimise placement of viscous dampers in buildings by minimising a life-cycle cost that includes the investment in damping and the losses due to future damage. Along with the results obtained in the course of other examples, the optimal solutions support a shift toward more resilient structures designed to mitigate structural and nonstructural damage beyond the traditional life-safety requirements.

Estimating Losses from Future Earthquakes

Estimating Losses from Future Earthquakes PDF Author:
Publisher: National Academies Press
ISBN:
Category : Buildings
Languages : en
Pages : 98

Get Book Here

Book Description


Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics

Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics PDF Author: T.G. Sitharam
Publisher: Springer Nature
ISBN: 9811614687
Category : Science
Languages : en
Pages : 550

Get Book Here

Book Description
This volume brings together contributions from world renowned researchers and practitioners in the field of geotechnical engineering. The chapters of this book are based on the keynote and invited lectures delivered at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The book presents advances in the field of soil dynamics and geotechnical earthquake engineering. A strong emphasis is placed on proving connections between academic research and field practice, with many examples, case studies, best practices, and discussions on performance-based design. This volume will be of interest to research scholars, academicians and industry professionals alike.

estimating losses from future earthquakes

estimating losses from future earthquakes PDF Author: Committee On Earthquake Engineering Panel on Earthquake Loss Estimation Methodology
Publisher: National Academies Press
ISBN:
Category : Nature
Languages : en
Pages : 247

Get Book Here

Book Description


Perspectives on European Earthquake Engineering and Seismology

Perspectives on European Earthquake Engineering and Seismology PDF Author: Atilla Ansal
Publisher: Springer
ISBN: 3319071181
Category : Technology & Engineering
Languages : en
Pages : 654

Get Book Here

Book Description
This book collects 5 keynote and 15 topic lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s twenty state-of-the-art papers were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies and managing risk in seismic regions. The book also presents the Third Ambraseys Distinguished Award Lecture given by Prof. Robin Spence in honor of Prof. Nicholas N. Ambraseys. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge content and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.