Author: Pavel Kurasov
Publisher: Springer Nature
ISBN: 3030315312
Category : Mathematics
Languages : en
Pages : 627
Book Description
Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics. As one of the most influential members of the St. Petersburg Mathematical School, he was one of the founders of the Leningrad School of Non-self-adjoint Operators. This volume collects research papers originating from two conferences that were organized in memory of Boris Pavlov: “Spectral Theory and Applications”, held in Stockholm, Sweden, in March 2016, and “Operator Theory, Analysis and Mathematical Physics – OTAMP2016” held at the Euler Institute in St. Petersburg, Russia, in August 2016. The volume also includes water-color paintings by Boris Pavlov, some personal photographs, as well as tributes from friends and colleagues.
Analysis as a Tool in Mathematical Physics
Author: Pavel Kurasov
Publisher: Springer Nature
ISBN: 3030315312
Category : Mathematics
Languages : en
Pages : 627
Book Description
Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics. As one of the most influential members of the St. Petersburg Mathematical School, he was one of the founders of the Leningrad School of Non-self-adjoint Operators. This volume collects research papers originating from two conferences that were organized in memory of Boris Pavlov: “Spectral Theory and Applications”, held in Stockholm, Sweden, in March 2016, and “Operator Theory, Analysis and Mathematical Physics – OTAMP2016” held at the Euler Institute in St. Petersburg, Russia, in August 2016. The volume also includes water-color paintings by Boris Pavlov, some personal photographs, as well as tributes from friends and colleagues.
Publisher: Springer Nature
ISBN: 3030315312
Category : Mathematics
Languages : en
Pages : 627
Book Description
Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics. As one of the most influential members of the St. Petersburg Mathematical School, he was one of the founders of the Leningrad School of Non-self-adjoint Operators. This volume collects research papers originating from two conferences that were organized in memory of Boris Pavlov: “Spectral Theory and Applications”, held in Stockholm, Sweden, in March 2016, and “Operator Theory, Analysis and Mathematical Physics – OTAMP2016” held at the Euler Institute in St. Petersburg, Russia, in August 2016. The volume also includes water-color paintings by Boris Pavlov, some personal photographs, as well as tributes from friends and colleagues.
Functions, Spaces, and Expansions
Author: Ole Christensen
Publisher: Springer Science & Business Media
ISBN: 0817649808
Category : Mathematics
Languages : en
Pages : 280
Book Description
This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.
Publisher: Springer Science & Business Media
ISBN: 0817649808
Category : Mathematics
Languages : en
Pages : 280
Book Description
This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.
Mathematical Analysis of Physical Problems
Author: Philip Russell Wallace
Publisher:
ISBN: 9780080856261
Category : Mathematical physics
Languages : en
Pages : 616
Book Description
This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more.
Publisher:
ISBN: 9780080856261
Category : Mathematical physics
Languages : en
Pages : 616
Book Description
This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more.
Analysis and Mathematical Physics
Author: H. Triebel
Publisher: Springer Science & Business Media
ISBN: 9789027720771
Category : Mathematics
Languages : en
Pages : 494
Book Description
Publisher: Springer Science & Business Media
ISBN: 9789027720771
Category : Mathematics
Languages : en
Pages : 494
Book Description
Symplectic Methods in Harmonic Analysis and in Mathematical Physics
Author: Maurice A. de Gosson
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
P-adic Analysis and Mathematical Physics
Author: Vasili? Sergeevich Vladimirov
Publisher: World Scientific
ISBN: 9789810208806
Category : Science
Languages : en
Pages : 350
Book Description
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.
Publisher: World Scientific
ISBN: 9789810208806
Category : Science
Languages : en
Pages : 350
Book Description
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.
Global and Stochastic Analysis with Applications to Mathematical Physics
Author: Yuri E. Gliklikh
Publisher: Springer Science & Business Media
ISBN: 0857291637
Category : Mathematics
Languages : en
Pages : 454
Book Description
Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is fundamental for the consideration of a broader class of problems. This book develops methods of Global Analysis and Stochastic Analysis such that their combination allows one to have a more or less common treatment for areas of mathematical physics that traditionally are considered as divergent and requiring different methods of investigation. Global and Stochastic Analysis with Applications to Mathematical Physics covers branches of mathematics that are currently absent in monograph form. Through the demonstration of new topics of investigation and results, both in traditional and more recent problems, this book offers a fresh perspective on ordinary and stochastic differential equations and inclusions (in particular, given in terms of Nelson's mean derivatives) on linear spaces and manifolds. Topics covered include classical mechanics on non-linear configuration spaces, problems of statistical and quantum physics, and hydrodynamics. A self-contained book that provides a large amount of preliminary material and recent results which will serve to be a useful introduction to the subject and a valuable resource for further research. It will appeal to researchers, graduate and PhD students working in global analysis, stochastic analysis and mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 0857291637
Category : Mathematics
Languages : en
Pages : 454
Book Description
Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is fundamental for the consideration of a broader class of problems. This book develops methods of Global Analysis and Stochastic Analysis such that their combination allows one to have a more or less common treatment for areas of mathematical physics that traditionally are considered as divergent and requiring different methods of investigation. Global and Stochastic Analysis with Applications to Mathematical Physics covers branches of mathematics that are currently absent in monograph form. Through the demonstration of new topics of investigation and results, both in traditional and more recent problems, this book offers a fresh perspective on ordinary and stochastic differential equations and inclusions (in particular, given in terms of Nelson's mean derivatives) on linear spaces and manifolds. Topics covered include classical mechanics on non-linear configuration spaces, problems of statistical and quantum physics, and hydrodynamics. A self-contained book that provides a large amount of preliminary material and recent results which will serve to be a useful introduction to the subject and a valuable resource for further research. It will appeal to researchers, graduate and PhD students working in global analysis, stochastic analysis and mathematical physics.
Applications of Global Analysis in Mathematical Physics
Author: Jerrold E. Marsden
Publisher:
ISBN:
Category : Global analysis (Mathematics)
Languages : en
Pages : 292
Book Description
Publisher:
ISBN:
Category : Global analysis (Mathematics)
Languages : en
Pages : 292
Book Description
Methods of Modern Mathematical Physics: Functional analysis
Author: Michael Reed
Publisher: Gulf Professional Publishing
ISBN: 0125850506
Category : Functional analysis
Languages : en
Pages : 417
Book Description
"This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations." --Publisher description.
Publisher: Gulf Professional Publishing
ISBN: 0125850506
Category : Functional analysis
Languages : en
Pages : 417
Book Description
"This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations." --Publisher description.
Methods of Mathematical Physics
Author: Richard Courant
Publisher: John Wiley & Sons
ISBN: 3527617248
Category : Science
Languages : en
Pages : 852
Book Description
Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.
Publisher: John Wiley & Sons
ISBN: 3527617248
Category : Science
Languages : en
Pages : 852
Book Description
Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.