Analysis and Mathematical Physics

Analysis and Mathematical Physics PDF Author: H. Triebel
Publisher: Springer Science & Business Media
ISBN: 9789027720771
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description

Analysis and Mathematical Physics

Analysis and Mathematical Physics PDF Author: H. Triebel
Publisher: Springer Science & Business Media
ISBN: 9789027720771
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description


Mathematical Analysis of Physical Problems

Mathematical Analysis of Physical Problems PDF Author: Philip Russell Wallace
Publisher: Courier Corporation
ISBN: 0486646769
Category : Science
Languages : en
Pages : 644

Get Book Here

Book Description
This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more. 1972 edition.

Analysis as a Tool in Mathematical Physics

Analysis as a Tool in Mathematical Physics PDF Author: Pavel Kurasov
Publisher: Springer Nature
ISBN: 3030315312
Category : Mathematics
Languages : en
Pages : 635

Get Book Here

Book Description
Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics. As one of the most influential members of the St. Petersburg Mathematical School, he was one of the founders of the Leningrad School of Non-self-adjoint Operators. This volume collects research papers originating from two conferences that were organized in memory of Boris Pavlov: “Spectral Theory and Applications”, held in Stockholm, Sweden, in March 2016, and “Operator Theory, Analysis and Mathematical Physics – OTAMP2016” held at the Euler Institute in St. Petersburg, Russia, in August 2016. The volume also includes water-color paintings by Boris Pavlov, some personal photographs, as well as tributes from friends and colleagues.

Nonstandard Methods in Stochastic Analysis and Mathematical Physics

Nonstandard Methods in Stochastic Analysis and Mathematical Physics PDF Author: Sergio Albeverio
Publisher: Courier Dover Publications
ISBN: 0486468992
Category : Mathematics
Languages : en
Pages : 529

Get Book Here

Book Description
Two-part treatment begins with a self-contained introduction to the subject, followed by applications to stochastic analysis and mathematical physics. "A welcome addition." — Bulletin of the American Mathematical Society. 1986 edition.

P-adic Analysis and Mathematical Physics

P-adic Analysis and Mathematical Physics PDF Author: Vasili? Sergeevich Vladimirov
Publisher: World Scientific
ISBN: 9789810208806
Category : Science
Languages : en
Pages : 350

Get Book Here

Book Description
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.

Symplectic Methods in Harmonic Analysis and in Mathematical Physics

Symplectic Methods in Harmonic Analysis and in Mathematical Physics PDF Author: Maurice A. de Gosson
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.

Some Applications of Functional Analysis in Mathematical Physics

Some Applications of Functional Analysis in Mathematical Physics PDF Author: S. L. Sobolev
Publisher: American Mathematical Soc.
ISBN: 9780821898321
Category : Mathematics
Languages : fr
Pages : 300

Get Book Here

Book Description
Special problems of functional analysis Variational methods in mathematical physics The theory of hyperbolic partial differential equations Comments Appendix: Methode nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales Comments on the appendix Bibliography Index

Applications of Global Analysis in Mathematical Physics

Applications of Global Analysis in Mathematical Physics PDF Author: Jerrold E. Marsden
Publisher:
ISBN:
Category : Global analysis (Mathematics)
Languages : en
Pages : 292

Get Book Here

Book Description


Methods of Modern Mathematical Physics: Functional analysis

Methods of Modern Mathematical Physics: Functional analysis PDF Author: Michael Reed
Publisher: Gulf Professional Publishing
ISBN: 0125850506
Category : Functional analysis
Languages : en
Pages : 417

Get Book Here

Book Description
"This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations." --Publisher description.

Global and Stochastic Analysis with Applications to Mathematical Physics

Global and Stochastic Analysis with Applications to Mathematical Physics PDF Author: Yuri E. Gliklikh
Publisher: Springer Science & Business Media
ISBN: 0857291637
Category : Mathematics
Languages : en
Pages : 454

Get Book Here

Book Description
Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is fundamental for the consideration of a broader class of problems. This book develops methods of Global Analysis and Stochastic Analysis such that their combination allows one to have a more or less common treatment for areas of mathematical physics that traditionally are considered as divergent and requiring different methods of investigation. Global and Stochastic Analysis with Applications to Mathematical Physics covers branches of mathematics that are currently absent in monograph form. Through the demonstration of new topics of investigation and results, both in traditional and more recent problems, this book offers a fresh perspective on ordinary and stochastic differential equations and inclusions (in particular, given in terms of Nelson's mean derivatives) on linear spaces and manifolds. Topics covered include classical mechanics on non-linear configuration spaces, problems of statistical and quantum physics, and hydrodynamics. A self-contained book that provides a large amount of preliminary material and recent results which will serve to be a useful introduction to the subject and a valuable resource for further research. It will appeal to researchers, graduate and PhD students working in global analysis, stochastic analysis and mathematical physics.