Author: Jorge Garcia
Publisher: MDPI
ISBN: 3039286862
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
The most important environmental challenge today's society is facing is to reduce the effects of CO2 emissions and global warming. Such an ambitious challenge can only be achieved through a holistic approach, capable of tackling the problem from a multidisciplinary point of view. One of the core technologies called to play a critical role in this approach is the use of energy storage systems. These systems enable, among other things, the balancing of the stochastic behavior of Renewable Sources and Distributed Generation in modern Energy Systems; the efficient supply of industrial and consumer loads; the development of efficient and clean transport; and the development of Nearly-Zero Energy Buildings (nZEB) and intelligent cities. Hybrid Energy Storage Systems (HESS) consist of two (or more) storage devices with complementary key characteristics, that are able to behave jointly with better performance than any of the technologies considered individually. Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications. This Special Issue focuses on the analysis, design and implementation of hybrid energy storage systems across a broad spectrum, encompassing different storage technologies (including electrochemical, capacitive, mechanical or mechanical storage devices), engineering branches (power electronics and control strategies; energy engineering; energy engineering; chemistry; modelling, simulation and emulation techniques; data analysis and algorithms; social and economic analysis; intelligent and Internet-of-Things (IoT) systems; and so on.), applications (energy systems, renewable energy generation, industrial applications, transportation, Uninterruptible Power Supplies (UPS) and critical load supply, etc.) and evaluation and performance (size and weight benefits, efficiency and power loss, economic analysis, environmental costs, etc.).
Analysis and Design of Hybrid Energy Storage Systems
Author: Jorge Garcia
Publisher: MDPI
ISBN: 3039286862
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
The most important environmental challenge today's society is facing is to reduce the effects of CO2 emissions and global warming. Such an ambitious challenge can only be achieved through a holistic approach, capable of tackling the problem from a multidisciplinary point of view. One of the core technologies called to play a critical role in this approach is the use of energy storage systems. These systems enable, among other things, the balancing of the stochastic behavior of Renewable Sources and Distributed Generation in modern Energy Systems; the efficient supply of industrial and consumer loads; the development of efficient and clean transport; and the development of Nearly-Zero Energy Buildings (nZEB) and intelligent cities. Hybrid Energy Storage Systems (HESS) consist of two (or more) storage devices with complementary key characteristics, that are able to behave jointly with better performance than any of the technologies considered individually. Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications. This Special Issue focuses on the analysis, design and implementation of hybrid energy storage systems across a broad spectrum, encompassing different storage technologies (including electrochemical, capacitive, mechanical or mechanical storage devices), engineering branches (power electronics and control strategies; energy engineering; energy engineering; chemistry; modelling, simulation and emulation techniques; data analysis and algorithms; social and economic analysis; intelligent and Internet-of-Things (IoT) systems; and so on.), applications (energy systems, renewable energy generation, industrial applications, transportation, Uninterruptible Power Supplies (UPS) and critical load supply, etc.) and evaluation and performance (size and weight benefits, efficiency and power loss, economic analysis, environmental costs, etc.).
Publisher: MDPI
ISBN: 3039286862
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
The most important environmental challenge today's society is facing is to reduce the effects of CO2 emissions and global warming. Such an ambitious challenge can only be achieved through a holistic approach, capable of tackling the problem from a multidisciplinary point of view. One of the core technologies called to play a critical role in this approach is the use of energy storage systems. These systems enable, among other things, the balancing of the stochastic behavior of Renewable Sources and Distributed Generation in modern Energy Systems; the efficient supply of industrial and consumer loads; the development of efficient and clean transport; and the development of Nearly-Zero Energy Buildings (nZEB) and intelligent cities. Hybrid Energy Storage Systems (HESS) consist of two (or more) storage devices with complementary key characteristics, that are able to behave jointly with better performance than any of the technologies considered individually. Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications. This Special Issue focuses on the analysis, design and implementation of hybrid energy storage systems across a broad spectrum, encompassing different storage technologies (including electrochemical, capacitive, mechanical or mechanical storage devices), engineering branches (power electronics and control strategies; energy engineering; energy engineering; chemistry; modelling, simulation and emulation techniques; data analysis and algorithms; social and economic analysis; intelligent and Internet-of-Things (IoT) systems; and so on.), applications (energy systems, renewable energy generation, industrial applications, transportation, Uninterruptible Power Supplies (UPS) and critical load supply, etc.) and evaluation and performance (size and weight benefits, efficiency and power loss, economic analysis, environmental costs, etc.).
Hybrid Energy System Models
Author: Asmae Berrada
Publisher: Academic Press
ISBN: 0128214031
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications
Publisher: Academic Press
ISBN: 0128214031
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems Includes significant global case studies of current and novel modeling techniques for comparison Covers numerical simulations of hybrid systems energy modeling and applications
Design and Development of Efficient Energy Systems
Author: Suman Lata Tripathi
Publisher: John Wiley & Sons
ISBN: 1119761778
Category : Computers
Languages : en
Pages : 384
Book Description
There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these “game changers,” governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.
Publisher: John Wiley & Sons
ISBN: 1119761778
Category : Computers
Languages : en
Pages : 384
Book Description
There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these “game changers,” governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.
Handbook on Battery Energy Storage System
Author: Asian Development Bank
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Modeling and Control of Static Converters for Hybrid Storage Systems
Author: Fekik, Arezki
Publisher: IGI Global
ISBN: 1799874494
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
The energy transition initiated in recent years has enabled the growing integration of renewable production into the energy mix. Microgrids make it possible to maximize the efficiency of energy transmission from source to consumer by bringing the latter together geographically and by reducing losses linked to transport. However, the lack of inertia and the micro-grid support system makes it weak, and energy storage is necessary to ensure its proper functioning. Current storage technologies do not make it possible to provide both a large capacity of energy and power at the same time. Hybrid storage is a solution that combines the advantages of several technologies and reduces their disadvantages. Modeling and Control of Static Converters for Hybrid Storage Systems covers the modeling, control theorems, and optimization techniques that solve many scientific problems for researchers in the field of power converter control for renewable energy hybrid storage and places particular emphasis on the modeling and control of static converters for hybrid storage systems. Covering topics ranging from energy storage to power generation, this book is ideal for automation engineers, electrical engineers, mechanical engineers, professionals, scientists, academicians, master's and doctoral students, and researchers in the disciplines of electrical and mechanical engineering.
Publisher: IGI Global
ISBN: 1799874494
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
The energy transition initiated in recent years has enabled the growing integration of renewable production into the energy mix. Microgrids make it possible to maximize the efficiency of energy transmission from source to consumer by bringing the latter together geographically and by reducing losses linked to transport. However, the lack of inertia and the micro-grid support system makes it weak, and energy storage is necessary to ensure its proper functioning. Current storage technologies do not make it possible to provide both a large capacity of energy and power at the same time. Hybrid storage is a solution that combines the advantages of several technologies and reduces their disadvantages. Modeling and Control of Static Converters for Hybrid Storage Systems covers the modeling, control theorems, and optimization techniques that solve many scientific problems for researchers in the field of power converter control for renewable energy hybrid storage and places particular emphasis on the modeling and control of static converters for hybrid storage systems. Covering topics ranging from energy storage to power generation, this book is ideal for automation engineers, electrical engineers, mechanical engineers, professionals, scientists, academicians, master's and doctoral students, and researchers in the disciplines of electrical and mechanical engineering.
Hybrid Energy System Models
Author: Asmae Berrada
Publisher: Academic Press
ISBN: 012821404X
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. - Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems - Includes significant global case studies of current and novel modeling techniques for comparison - Covers numerical simulations of hybrid systems energy modeling and applications
Publisher: Academic Press
ISBN: 012821404X
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Hybrid Energy System Models presents a number of techniques to model a large variety of hybrid energy systems in all aspects of sizing, design, operation, economic dispatch, optimization and control. The book's authors present a number of new methods to model hybrid energy systems and several renewable energy systems, including photovoltaic, solar plus wind and hydropower, energy storage, and combined heat and power systems. With critical modeling examples, global case studies and techno-economic modeling integrated in every chapter, this book is essential to understanding the development of affordable energy systems globally, particularly from renewable resources. With a detailed overview and a comparison of hybrid energy systems used in different regions, as well as innovative hybrid energy system designs covered, this book is useful for practicing power and energy engineers needing answers for what factors to consider when modeling a hybrid energy system and what tools are available to model hybrid systems. - Combines research on several renewable energy systems, energy storage, and combined heat and power systems into a single informative resource on hybrid energy systems - Includes significant global case studies of current and novel modeling techniques for comparison - Covers numerical simulations of hybrid systems energy modeling and applications
Design, Analysis and Applications of Renewable Energy Systems
Author: Ahmad Taher Azar
Publisher: Academic Press
ISBN: 0323859917
Category : Technology & Engineering
Languages : en
Pages : 762
Book Description
Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design - Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods - Includes new circuits and systems, helping researchers solve many nonlinear problems
Publisher: Academic Press
ISBN: 0323859917
Category : Technology & Engineering
Languages : en
Pages : 762
Book Description
Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design - Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods - Includes new circuits and systems, helping researchers solve many nonlinear problems
Vol.1 A.I.D.A.A. Proceedings of the XXV AIDAA International Congress of Aeronautics and Astronautics
Author: M. Costanzi
Publisher: Persiani Editore
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 736
Book Description
The 2019 AIDAA Congress is the biennial Congress of the Italian Association of Aeronautics and Astronautics, the Italian no-profit cultural association dedicated to the aerospace community. AIDAA was formed in 1969 through a merging of the former Societies AIDA (Associazione Italiana di Aerotecnica formed in 1920) and AIR (Associazione Italiana Razzi).In 1951, AIDA was among the founders of the International Astronautical Federation (IAF) and in 1957 of the International Council of Aeronautical Sciences (ICAS). In 1992 AIDAA joined the Confederation of European Aerospace Societies (CEAS).The Congress is jointly hosted by AIDAA Rome Section, the Departments of Astronautic, Electric and Energetic Engineering (DIAEE) and of Mechanical and Aerospace Engineering (DIMA) of Civil and Industrial Engineering Faculty and the School of Aerospace Engineering (SIA) of Sapienza University of Rome. The degree courses in Aerospace Engineering are attended by almost 1500 students.
Publisher: Persiani Editore
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 736
Book Description
The 2019 AIDAA Congress is the biennial Congress of the Italian Association of Aeronautics and Astronautics, the Italian no-profit cultural association dedicated to the aerospace community. AIDAA was formed in 1969 through a merging of the former Societies AIDA (Associazione Italiana di Aerotecnica formed in 1920) and AIR (Associazione Italiana Razzi).In 1951, AIDA was among the founders of the International Astronautical Federation (IAF) and in 1957 of the International Council of Aeronautical Sciences (ICAS). In 1992 AIDAA joined the Confederation of European Aerospace Societies (CEAS).The Congress is jointly hosted by AIDAA Rome Section, the Departments of Astronautic, Electric and Energetic Engineering (DIAEE) and of Mechanical and Aerospace Engineering (DIMA) of Civil and Industrial Engineering Faculty and the School of Aerospace Engineering (SIA) of Sapienza University of Rome. The degree courses in Aerospace Engineering are attended by almost 1500 students.
Hybrid Power
Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1000328597
Category : Technology & Engineering
Languages : en
Pages : 451
Book Description
Hybrid energy systems integrate multiple sources of power generation, storage, and transport mechanisms and can facilitate increased usage of cleaner, renewable, and more efficient energy sources. Hybrid Power: Generation, Storage, and Grids discusses hybrid energy systems from fundamentals through applications and discusses generation, storage, and grids. Highlights fundamentals and applications of hybrid energy storage Discusses use in hybrid and electric vehicles and home energy needs Discusses issues related to hybrid renewable energy systems connected to the utility grid Describes the usefulness of hybrid microgrids and various forms of off-grid energy such as mini-grids, nanogrids, and stand-alone systems Covers the use of hybrid renewable energy systems for rural electrification around the world Discusses various forms and applications of hybrid energy systems, hybrid energy storage, hybrid microgrids, and hybrid off-grid energy systems Details simulation and optimization of hybrid renewable energy systems This book is aimed at advanced students and researchers in academia, government, and industry, seeking a comprehensive overview of the basics, technologies, and applications of hybrid energy systems.
Publisher: CRC Press
ISBN: 1000328597
Category : Technology & Engineering
Languages : en
Pages : 451
Book Description
Hybrid energy systems integrate multiple sources of power generation, storage, and transport mechanisms and can facilitate increased usage of cleaner, renewable, and more efficient energy sources. Hybrid Power: Generation, Storage, and Grids discusses hybrid energy systems from fundamentals through applications and discusses generation, storage, and grids. Highlights fundamentals and applications of hybrid energy storage Discusses use in hybrid and electric vehicles and home energy needs Discusses issues related to hybrid renewable energy systems connected to the utility grid Describes the usefulness of hybrid microgrids and various forms of off-grid energy such as mini-grids, nanogrids, and stand-alone systems Covers the use of hybrid renewable energy systems for rural electrification around the world Discusses various forms and applications of hybrid energy systems, hybrid energy storage, hybrid microgrids, and hybrid off-grid energy systems Details simulation and optimization of hybrid renewable energy systems This book is aimed at advanced students and researchers in academia, government, and industry, seeking a comprehensive overview of the basics, technologies, and applications of hybrid energy systems.
Hybrid Technologies for Power Generation
Author: Massimiliano Lo Faro
Publisher: Academic Press
ISBN: 0128241861
Category : Science
Languages : en
Pages : 530
Book Description
Hybrid Technologies for Power Generation addresses the topics related to hybrid technologies by coupling conventional thermal engines with novel technologies, including fuel cells, batteries, thermal storage and electrolysis, and reporting on the most recent advances concerning transport and stationary applications. Potential operating schemes of hybrid power generation systems are covered, highlighting possible combinations of technology and guideline selection according to the energy demands of end-users. Going beyond state-of-the-art technological developments for processes, devices and systems, this book discusses the environmental impact and existing hurdles of moving from a single device to new approaches for efficient energy generation, transfer, conversion, high-density storage and consumption. By describing the practical viability of novel devices coupled to conventional thermal devices, this book has a decisive impact in energy system research, supporting those in the energy research and engineering communities. - Covers detailed thermodynamic requirements for multiple smart technologies included in hybrid systems (i.e., FC, electrolysers, supercapacitors, batteries, thermal storage, etc.) - Features fundamental analysis and modeling to optimize the combination of smart technologies with traditional engines - Details protocols for the analysis, operation and requirements of large-scale production
Publisher: Academic Press
ISBN: 0128241861
Category : Science
Languages : en
Pages : 530
Book Description
Hybrid Technologies for Power Generation addresses the topics related to hybrid technologies by coupling conventional thermal engines with novel technologies, including fuel cells, batteries, thermal storage and electrolysis, and reporting on the most recent advances concerning transport and stationary applications. Potential operating schemes of hybrid power generation systems are covered, highlighting possible combinations of technology and guideline selection according to the energy demands of end-users. Going beyond state-of-the-art technological developments for processes, devices and systems, this book discusses the environmental impact and existing hurdles of moving from a single device to new approaches for efficient energy generation, transfer, conversion, high-density storage and consumption. By describing the practical viability of novel devices coupled to conventional thermal devices, this book has a decisive impact in energy system research, supporting those in the energy research and engineering communities. - Covers detailed thermodynamic requirements for multiple smart technologies included in hybrid systems (i.e., FC, electrolysers, supercapacitors, batteries, thermal storage, etc.) - Features fundamental analysis and modeling to optimize the combination of smart technologies with traditional engines - Details protocols for the analysis, operation and requirements of large-scale production