Author: Jorge Vitório Pereira
Publisher: Springer
ISBN: 3319145622
Category : Mathematics
Languages : en
Pages : 229
Book Description
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern’s bound and Trépreau’s algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.
An Invitation to Web Geometry
Author: Jorge Vitório Pereira
Publisher: Springer
ISBN: 3319145622
Category : Mathematics
Languages : en
Pages : 229
Book Description
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern’s bound and Trépreau’s algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.
Publisher: Springer
ISBN: 3319145622
Category : Mathematics
Languages : en
Pages : 229
Book Description
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern’s bound and Trépreau’s algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.
An Invitation to Algebraic Geometry
Author: Karen E. Smith
Publisher: Springer Science & Business Media
ISBN: 1475744978
Category : Mathematics
Languages : en
Pages : 173
Book Description
This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
Publisher: Springer Science & Business Media
ISBN: 1475744978
Category : Mathematics
Languages : en
Pages : 173
Book Description
This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
An Invitation to Quantum Cohomology
Author: Joachim Kock
Publisher: Springer Science & Business Media
ISBN: 0817644954
Category : Mathematics
Languages : en
Pages : 162
Book Description
Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory
Publisher: Springer Science & Business Media
ISBN: 0817644954
Category : Mathematics
Languages : en
Pages : 162
Book Description
Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory
Differential Geometry of Curves and Surfaces
Author: Kristopher Tapp
Publisher: Springer
ISBN: 3319397990
Category : Mathematics
Languages : en
Pages : 370
Book Description
This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.
Publisher: Springer
ISBN: 3319397990
Category : Mathematics
Languages : en
Pages : 370
Book Description
This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.
Algebraic Geometry
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
The Geometry of Schemes
Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 0387226397
Category : Mathematics
Languages : en
Pages : 265
Book Description
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Publisher: Springer Science & Business Media
ISBN: 0387226397
Category : Mathematics
Languages : en
Pages : 265
Book Description
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
An Invitation to Arithmetic Geometry
Author: Dino Lorenzini
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 397
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 397
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Conceptual Spaces
Author: Peter Gardenfors
Publisher: MIT Press
ISBN: 9780262572194
Category : Psychology
Languages : en
Pages : 324
Book Description
Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.
Publisher: MIT Press
ISBN: 9780262572194
Category : Psychology
Languages : en
Pages : 324
Book Description
Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.
3264 and All That
Author: David Eisenbud
Publisher: Cambridge University Press
ISBN: 1107017084
Category : Mathematics
Languages : en
Pages : 633
Book Description
3264, the mathematical solution to a question concerning geometric figures.
Publisher: Cambridge University Press
ISBN: 1107017084
Category : Mathematics
Languages : en
Pages : 633
Book Description
3264, the mathematical solution to a question concerning geometric figures.
A Course on the Web Graph
Author: Anthony Bonato
Publisher: American Mathematical Soc.
ISBN: 0821844679
Category : Computers
Languages : en
Pages : 200
Book Description
"A Course on the Web Graph provides a comprehensive introduction to state-of-the-art research on the applications of graph theory to real-world networks such as the web graph. It is the first mathematically rigorous textbook discussing both models of the web graph and algorithms for searching the web. After introducing key tools required for the study of web graph mathematics, an overview is given of the most widely studied models for the web graph. A discussion of popular web search algorithms, e.g. PageRank, is followed by additional topics, such as applications of infinite graph theory to the web graph, spectral properties of power law graphs, domination in the web graph, and the spread of viruses in networks. The book is based on a graduate course taught at the AARMS 2006 Summer School at Dalhousie University. As such it is self-contained and includes over 100 exercises. The reader of the book will gain a working knowledge of current research in graph theory and its modern applications. In addition, the reader will learn first-hand about models of the web, and the mathematics underlying modern search engines."--Publisher's description.
Publisher: American Mathematical Soc.
ISBN: 0821844679
Category : Computers
Languages : en
Pages : 200
Book Description
"A Course on the Web Graph provides a comprehensive introduction to state-of-the-art research on the applications of graph theory to real-world networks such as the web graph. It is the first mathematically rigorous textbook discussing both models of the web graph and algorithms for searching the web. After introducing key tools required for the study of web graph mathematics, an overview is given of the most widely studied models for the web graph. A discussion of popular web search algorithms, e.g. PageRank, is followed by additional topics, such as applications of infinite graph theory to the web graph, spectral properties of power law graphs, domination in the web graph, and the spread of viruses in networks. The book is based on a graduate course taught at the AARMS 2006 Summer School at Dalhousie University. As such it is self-contained and includes over 100 exercises. The reader of the book will gain a working knowledge of current research in graph theory and its modern applications. In addition, the reader will learn first-hand about models of the web, and the mathematics underlying modern search engines."--Publisher's description.