Author: Claude V. Williams
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 92
Book Description
An Investigation of the Effects of a Geometric Twist on the Aerodynamic Loading Characteristics of a 45© Sweptback Wing-body Configuration at Transonic Speeds
Author: Claude V. Williams
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 92
Book Description
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 92
Book Description
Aerodynamics of Wings and Bodies
Author: Holt Ashley
Publisher: Courier Corporation
ISBN: 0486648990
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This excellent, innovative reference offers a wealth of useful information and a solid background in the fundamentals of aerodynamics. Fluid mechanics, constant density inviscid flow, singular perturbation problems, viscosity, thin-wing and slender body theories, drag minimalization, and other essentials are addressed in a lively, literate manner and accompanied by diagrams.
Publisher: Courier Corporation
ISBN: 0486648990
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This excellent, innovative reference offers a wealth of useful information and a solid background in the fundamentals of aerodynamics. Fluid mechanics, constant density inviscid flow, singular perturbation problems, viscosity, thin-wing and slender body theories, drag minimalization, and other essentials are addressed in a lively, literate manner and accompanied by diagrams.
The Effects of Wing Incidence on the Aerodynamic Loading Characteristics of a Sweptback Wing-body Combination at Transonic Speeds
Author: Harold L. Robinson
Publisher:
ISBN:
Category : Aerodynamic load
Languages : en
Pages : 94
Book Description
Publisher:
ISBN:
Category : Aerodynamic load
Languages : en
Pages : 94
Book Description
Transonic Aerodynamic Loading Characteristics of a Wing-body-tail Combination Having 52.5° Sweptback Wing of Aspect Ratio 3 with Conical Wing Camber and Body Indentation for a Design Mach Number [square Root Of] 2
Author: Marlowe D. Cassetti
Publisher:
ISBN:
Category : Transonic wind tunnels
Languages : en
Pages : 104
Book Description
An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5° with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0° to 14°, with Reynolds numbers based on mean aerodynamic chord varying from 7 x 106 to 8 x 106. Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced to transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.
Publisher:
ISBN:
Category : Transonic wind tunnels
Languages : en
Pages : 104
Book Description
An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5° with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0° to 14°, with Reynolds numbers based on mean aerodynamic chord varying from 7 x 106 to 8 x 106. Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced to transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.
Fundamentals of Aircraft and Rocket Propulsion
Author: Ahmed F. El-Sayed
Publisher: Springer
ISBN: 1447167961
Category : Technology & Engineering
Languages : en
Pages : 1025
Book Description
This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.
Publisher: Springer
ISBN: 1447167961
Category : Technology & Engineering
Languages : en
Pages : 1025
Book Description
This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.
Aircraft Loading and Structural Layout
Author: Denis Howe
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 632
Book Description
In this latest contribution to the conceptual design of an aircraft Denis Howe presents comprehensive coverage of all aspects of loading action analysis, together with the logical extension to the conceptual design of the airframe. He thereby meets two perceived needs which are not currently addressed by existing aircraft design texts, where loading analysis tends to be dealt with somewhat superficially, treating only the basic symmetric flight envelope, and where structural analysis often assumes that a certain level of design detail has already been established. Graduate and post-graduate level aeronautical students will welcome the approach offered by Aircraft Loading and Structural Layout. Practising engineers in the aircraft industry will find a useful loading action reference, providing a simple method for the derivation of initial structural data for input to advance analysis programs and the interpretation of the output from them.
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 632
Book Description
In this latest contribution to the conceptual design of an aircraft Denis Howe presents comprehensive coverage of all aspects of loading action analysis, together with the logical extension to the conceptual design of the airframe. He thereby meets two perceived needs which are not currently addressed by existing aircraft design texts, where loading analysis tends to be dealt with somewhat superficially, treating only the basic symmetric flight envelope, and where structural analysis often assumes that a certain level of design detail has already been established. Graduate and post-graduate level aeronautical students will welcome the approach offered by Aircraft Loading and Structural Layout. Practising engineers in the aircraft industry will find a useful loading action reference, providing a simple method for the derivation of initial structural data for input to advance analysis programs and the interpretation of the output from them.
A Modern Course in Aeroelasticity
Author: E.H. Dowell
Publisher: Springer Science & Business Media
ISBN: 9401104999
Category : Technology & Engineering
Languages : en
Pages : 724
Book Description
Aeroelasticity is the study of flexible structures situated in a flowing fluid. Its modern origins are in the field of aerospace engineering, but it has now expanded to include phenomena arising in other fields such as bioengineering, civil engineering, mechanical engineering and nuclear engineering. The present volume is a teaching text for a first, and possibly second, course in aeroelasticity. It will also be useful as a reference source on the fundamentals of the subject for practitioners. In this third edition, several chapters have been revised and three new chapters added. The latter include a brief introduction to `Experimental Aeroelasticity', an overview of a frontier of research `Nonlinear Aeroelasticity', and the first connected, authoritative account of `Aeroelastic Control' in book form. The authors are drawn from a range of fields including aerospace engineering, civil engineering, mechanical engineering, rotorcraft and turbomachinery. Each author is a leading expert in the subject of his chapter and has many years of experience in consulting, research and teaching.
Publisher: Springer Science & Business Media
ISBN: 9401104999
Category : Technology & Engineering
Languages : en
Pages : 724
Book Description
Aeroelasticity is the study of flexible structures situated in a flowing fluid. Its modern origins are in the field of aerospace engineering, but it has now expanded to include phenomena arising in other fields such as bioengineering, civil engineering, mechanical engineering and nuclear engineering. The present volume is a teaching text for a first, and possibly second, course in aeroelasticity. It will also be useful as a reference source on the fundamentals of the subject for practitioners. In this third edition, several chapters have been revised and three new chapters added. The latter include a brief introduction to `Experimental Aeroelasticity', an overview of a frontier of research `Nonlinear Aeroelasticity', and the first connected, authoritative account of `Aeroelastic Control' in book form. The authors are drawn from a range of fields including aerospace engineering, civil engineering, mechanical engineering, rotorcraft and turbomachinery. Each author is a leading expert in the subject of his chapter and has many years of experience in consulting, research and teaching.
A Finite-step Method for Calculation of Theoretical Load Distributions for Arbitrary Lifting-surface Arrangements at Subsonic Speeds
Author: James A. Blackwell (Jr.)
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 48
Book Description
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 48
Book Description
Introduction to Aircraft Aeroelasticity and Loads
Author: Jan Robert Wright
Publisher: John Wiley & Sons
ISBN: 047085846X
Category : Technology & Engineering
Languages : en
Pages : 559
Book Description
Aeroelastic phenomena arising from the interaction of aerodynamic, elastic and inertia forces, and the loads resulting from flight / ground manoeuvres and gust / turbulence encounters, have a significant influence upon aircraft design. The prediction of aircraft aeroelastic stability, response and loads requires application of a range of interrelated engineering disciplines. This new textbook introduces the foundations of aeroelasticity and loads for the flexible aircraft, providing an understanding of the main concepts involved and relating them to aircraft behaviour and industrial practice. This book includes the use of simplified mathematical models to demonstrate key aeroelastic and loads phenomena including flutter, divergence, control effectiveness and the response and loads resulting from flight / ground manoeuvres and gust / turbulence encounters. It provides an introduction to some up-to-date methodologies for aeroelastics and loads modelling. It lays emphasis on the strong link between aeroelasticity and loads. It also includes provision of MATLAB and SIMULINK programs for the simplified analyses. It offers an overview of typical industrial practice in meeting certification requirements.
Publisher: John Wiley & Sons
ISBN: 047085846X
Category : Technology & Engineering
Languages : en
Pages : 559
Book Description
Aeroelastic phenomena arising from the interaction of aerodynamic, elastic and inertia forces, and the loads resulting from flight / ground manoeuvres and gust / turbulence encounters, have a significant influence upon aircraft design. The prediction of aircraft aeroelastic stability, response and loads requires application of a range of interrelated engineering disciplines. This new textbook introduces the foundations of aeroelasticity and loads for the flexible aircraft, providing an understanding of the main concepts involved and relating them to aircraft behaviour and industrial practice. This book includes the use of simplified mathematical models to demonstrate key aeroelastic and loads phenomena including flutter, divergence, control effectiveness and the response and loads resulting from flight / ground manoeuvres and gust / turbulence encounters. It provides an introduction to some up-to-date methodologies for aeroelastics and loads modelling. It lays emphasis on the strong link between aeroelasticity and loads. It also includes provision of MATLAB and SIMULINK programs for the simplified analyses. It offers an overview of typical industrial practice in meeting certification requirements.
Wind-tunnel Investigation at Low Speed of the Effect of Varying the Ratio of Body Diameter to Wing Span from 0.1 to 0.8 on the Aerodynamic Characteristics in Pitch of the 45© Sweptback-wing--body Combination
Author: Harold S. Johnson
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 36
Book Description
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 36
Book Description