Author: K. Kirk Shung
Publisher: Academic Press
ISBN: 0323139930
Category : Science
Languages : en
Pages : 308
Book Description
Since the early 1960's, the field of medical imaging has experienced explosive growth due to the development of three new imaging modalities-radionuclide imaging, ultrasound, and magnetic resonance imaging. Along with X-ray, they are among the most important clinical diagnostic tools in medicine today. Additionally, the digital revolution has played a major role in this growth, with advances in computer and digital technology and in electronics making fast data acquisition and mass data storage possible. This text provides an introduction to the physics and instrumentation of the four most often used medical imaging techniques. Each chapter includes a discussion of recent technological developments and the biological effects of the imaging modality. End-of-chapter problem sets, lists of relevant references, and suggested further reading are presented for each technique. - X-ray imaging, including CT and digital radiography - Radionuclide imaging, including SPECT and PET - Ultrasound imaging - Magnetic resonance imaging
Principles of Medical Imaging
Author: K. Kirk Shung
Publisher: Academic Press
ISBN: 0323139930
Category : Science
Languages : en
Pages : 308
Book Description
Since the early 1960's, the field of medical imaging has experienced explosive growth due to the development of three new imaging modalities-radionuclide imaging, ultrasound, and magnetic resonance imaging. Along with X-ray, they are among the most important clinical diagnostic tools in medicine today. Additionally, the digital revolution has played a major role in this growth, with advances in computer and digital technology and in electronics making fast data acquisition and mass data storage possible. This text provides an introduction to the physics and instrumentation of the four most often used medical imaging techniques. Each chapter includes a discussion of recent technological developments and the biological effects of the imaging modality. End-of-chapter problem sets, lists of relevant references, and suggested further reading are presented for each technique. - X-ray imaging, including CT and digital radiography - Radionuclide imaging, including SPECT and PET - Ultrasound imaging - Magnetic resonance imaging
Publisher: Academic Press
ISBN: 0323139930
Category : Science
Languages : en
Pages : 308
Book Description
Since the early 1960's, the field of medical imaging has experienced explosive growth due to the development of three new imaging modalities-radionuclide imaging, ultrasound, and magnetic resonance imaging. Along with X-ray, they are among the most important clinical diagnostic tools in medicine today. Additionally, the digital revolution has played a major role in this growth, with advances in computer and digital technology and in electronics making fast data acquisition and mass data storage possible. This text provides an introduction to the physics and instrumentation of the four most often used medical imaging techniques. Each chapter includes a discussion of recent technological developments and the biological effects of the imaging modality. End-of-chapter problem sets, lists of relevant references, and suggested further reading are presented for each technique. - X-ray imaging, including CT and digital radiography - Radionuclide imaging, including SPECT and PET - Ultrasound imaging - Magnetic resonance imaging
An Introduction to the Principles of Medical Imaging
Author: Chris Guy
Publisher:
ISBN: 9781860945021
Category : Medical
Languages : en
Pages : 374
Book Description
- Covers the entire field of medical imaging at an introductory level - Provides a brief description of the clinical context of imaging for students with an engineering background - Provides a descriptive, non-mathematical background to the physics underpinning imaging for students with a medical background - Includes exercises and problems at the end of every chapter to test readers' understanding of the material
Publisher:
ISBN: 9781860945021
Category : Medical
Languages : en
Pages : 374
Book Description
- Covers the entire field of medical imaging at an introductory level - Provides a brief description of the clinical context of imaging for students with an engineering background - Provides a descriptive, non-mathematical background to the physics underpinning imaging for students with a medical background - Includes exercises and problems at the end of every chapter to test readers' understanding of the material
Fundamentals of Medical Imaging
Author: Paul Suetens
Publisher: Cambridge University Press
ISBN: 1139479881
Category : Medical
Languages : en
Pages : 265
Book Description
Fundamentals of Medical Imaging, second edition, is an invaluable technical introduction to each imaging modality, explaining the mathematical and physical principles and giving a clear understanding of how images are obtained and interpreted. Individual chapters cover each imaging modality – radiography, CT, MRI, nuclear medicine and ultrasound – reviewing the physics of the signal and its interaction with tissue, the image formation or reconstruction process, a discussion of image quality and equipment, clinical applications and biological effects and safety issues. Subsequent chapters review image analysis and visualization for diagnosis, treatment and surgery. New to this edition: • Appendix of questions and answers • New chapter on 3D image visualization • Advanced mathematical formulae in separate text boxes • Ancillary website containing 3D animations: www.cambridge.org/suetens • Full colour illustrations throughout Engineers, clinicians, mathematicians and physicists will find this an invaluable aid in understanding the physical principles of imaging and their clinical applications.
Publisher: Cambridge University Press
ISBN: 1139479881
Category : Medical
Languages : en
Pages : 265
Book Description
Fundamentals of Medical Imaging, second edition, is an invaluable technical introduction to each imaging modality, explaining the mathematical and physical principles and giving a clear understanding of how images are obtained and interpreted. Individual chapters cover each imaging modality – radiography, CT, MRI, nuclear medicine and ultrasound – reviewing the physics of the signal and its interaction with tissue, the image formation or reconstruction process, a discussion of image quality and equipment, clinical applications and biological effects and safety issues. Subsequent chapters review image analysis and visualization for diagnosis, treatment and surgery. New to this edition: • Appendix of questions and answers • New chapter on 3D image visualization • Advanced mathematical formulae in separate text boxes • Ancillary website containing 3D animations: www.cambridge.org/suetens • Full colour illustrations throughout Engineers, clinicians, mathematicians and physicists will find this an invaluable aid in understanding the physical principles of imaging and their clinical applications.
Introduction to the Science of Medical Imaging
Author: R. Nick Bryan
Publisher: Cambridge University Press
ISBN: 0521747627
Category : Medical
Languages : en
Pages : 335
Book Description
This landmark text from world-leading radiologist describes and illustrates how imaging techniques are created, analyzed and applied to biomedical problems.
Publisher: Cambridge University Press
ISBN: 0521747627
Category : Medical
Languages : en
Pages : 335
Book Description
This landmark text from world-leading radiologist describes and illustrates how imaging techniques are created, analyzed and applied to biomedical problems.
Medical Imaging
Author: Mostafa Analoui
Publisher: CRC Press
ISBN: 1439871035
Category : Medical
Languages : en
Pages : 445
Book Description
The discovery of x-ray, as a landmark event, enabled us to see the "invisible," opening a new era in medical diagnostics. More importantly, it offered a unique undestanding around the interaction of electromagnetic signal with human tissue and the utility of its selective absorption, scattering, diffusion, and reflection as a tool for understanding
Publisher: CRC Press
ISBN: 1439871035
Category : Medical
Languages : en
Pages : 445
Book Description
The discovery of x-ray, as a landmark event, enabled us to see the "invisible," opening a new era in medical diagnostics. More importantly, it offered a unique undestanding around the interaction of electromagnetic signal with human tissue and the utility of its selective absorption, scattering, diffusion, and reflection as a tool for understanding
Medical Imaging
Author: Krzysztof Iniewski
Publisher: John Wiley & Sons
ISBN: 9780470451809
Category : Science
Languages : en
Pages : 328
Book Description
A must-read for anyone working in electronics in the healthcare sector This one-of-a-kind book addresses state-of-the-art integrated circuit design in the context of medical imaging of the human body. It explores new opportunities in ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine (PET, SPECT), emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Divided into four clear parts and with contributions from a panel of international experts, Medical Imaging systematically covers: X-ray imaging and computed tomography–X-ray and CT imaging principles; Active Matrix Flat Panel Imagers (AMFPI) for diagnostic medical imaging applications; photon counting and integrating readout circuits; noise coupling in digital X-ray imaging Nuclear medicine–SPECT and PET imaging principles; low-noise electronics for radiation sensors Ultrasound imaging–Electronics for diagnostic ultrasonic imaging Magnetic resonance imaging–Magnetic resonance imaging principles; MRI technology
Publisher: John Wiley & Sons
ISBN: 9780470451809
Category : Science
Languages : en
Pages : 328
Book Description
A must-read for anyone working in electronics in the healthcare sector This one-of-a-kind book addresses state-of-the-art integrated circuit design in the context of medical imaging of the human body. It explores new opportunities in ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine (PET, SPECT), emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Divided into four clear parts and with contributions from a panel of international experts, Medical Imaging systematically covers: X-ray imaging and computed tomography–X-ray and CT imaging principles; Active Matrix Flat Panel Imagers (AMFPI) for diagnostic medical imaging applications; photon counting and integrating readout circuits; noise coupling in digital X-ray imaging Nuclear medicine–SPECT and PET imaging principles; low-noise electronics for radiation sensors Ultrasound imaging–Electronics for diagnostic ultrasonic imaging Magnetic resonance imaging–Magnetic resonance imaging principles; MRI technology
Introduction to Functional Magnetic Resonance Imaging
Author: Richard B. Buxton
Publisher: Cambridge University Press
ISBN: 1139481304
Category : Medical
Languages : en
Pages : 479
Book Description
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Publisher: Cambridge University Press
ISBN: 1139481304
Category : Medical
Languages : en
Pages : 479
Book Description
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Magnetic Resonance Imaging
Author: Robert W. Brown
Publisher: John Wiley & Sons
ISBN: 0471720852
Category : Medical
Languages : en
Pages : 976
Book Description
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Publisher: John Wiley & Sons
ISBN: 0471720852
Category : Medical
Languages : en
Pages : 976
Book Description
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Principles of Medical Imaging for Engineers
Author: Michael Chappell
Publisher: Springer Nature
ISBN: 3030305112
Category : Medical
Languages : en
Pages : 169
Book Description
This introduction to medical imaging introduces all of the major medical imaging techniques in wide use in both medical practice and medical research, including Computed Tomography, Ultrasound, Positron Emission Tomography, Single Photon Emission Tomography and Magnetic Resonance Imaging. Principles of Medical Imaging for Engineers introduces fundamental concepts related to why we image and what we are seeking to achieve to get good images, such as the meaning of ‘contrast’ in the context of medical imaging. This introductory text separates the principles by which ‘signals’ are generated and the subsequent ‘reconstruction’ processes, to help illustrate that these are separate concepts and also highlight areas in which apparently different medical imaging methods share common theoretical principles. Exercises are provided in every chapter, so the student reader can test their knowledge and check against worked solutions and examples. The text considers firstly the underlying physical principles by which information about tissues within the body can be extracted in the form of signals, considering the major principles used: transmission, reflection, emission and resonance. Then, it goes on to explain how these signals can be converted into images, i.e., full 3D volumes, where appropriate showing how common methods of ‘reconstruction’ are shared by some imaging methods despite relying on different physics to generate the ‘signals’. Finally, it examines how medical imaging can be used to generate more than just pictures, but genuine quantitative measurements, and increasingly measurements of physiological processes, at every point within the 3D volume by methods such as the use of tracers and advanced dynamic acquisitions. Principles of Medical Imaging for Engineers will be of use to engineering and physical science students and graduate students with an interest in biomedical engineering, and to their lecturers.
Publisher: Springer Nature
ISBN: 3030305112
Category : Medical
Languages : en
Pages : 169
Book Description
This introduction to medical imaging introduces all of the major medical imaging techniques in wide use in both medical practice and medical research, including Computed Tomography, Ultrasound, Positron Emission Tomography, Single Photon Emission Tomography and Magnetic Resonance Imaging. Principles of Medical Imaging for Engineers introduces fundamental concepts related to why we image and what we are seeking to achieve to get good images, such as the meaning of ‘contrast’ in the context of medical imaging. This introductory text separates the principles by which ‘signals’ are generated and the subsequent ‘reconstruction’ processes, to help illustrate that these are separate concepts and also highlight areas in which apparently different medical imaging methods share common theoretical principles. Exercises are provided in every chapter, so the student reader can test their knowledge and check against worked solutions and examples. The text considers firstly the underlying physical principles by which information about tissues within the body can be extracted in the form of signals, considering the major principles used: transmission, reflection, emission and resonance. Then, it goes on to explain how these signals can be converted into images, i.e., full 3D volumes, where appropriate showing how common methods of ‘reconstruction’ are shared by some imaging methods despite relying on different physics to generate the ‘signals’. Finally, it examines how medical imaging can be used to generate more than just pictures, but genuine quantitative measurements, and increasingly measurements of physiological processes, at every point within the 3D volume by methods such as the use of tracers and advanced dynamic acquisitions. Principles of Medical Imaging for Engineers will be of use to engineering and physical science students and graduate students with an interest in biomedical engineering, and to their lecturers.
Introduction to Medical Imaging Management
Author: Bernard Rubenzer
Publisher: CRC Press
ISBN: 1439891842
Category : Medical
Languages : en
Pages : 191
Book Description
In the past, for the most part, people who moved into management positions in medical imaging were chosen because they were the best technologists. However, the skill set for technologists and supervisors/managers are vastly different. Even an MBA-educated person may not be ready to take on imaging management. As an example, when buying a very expe
Publisher: CRC Press
ISBN: 1439891842
Category : Medical
Languages : en
Pages : 191
Book Description
In the past, for the most part, people who moved into management positions in medical imaging were chosen because they were the best technologists. However, the skill set for technologists and supervisors/managers are vastly different. Even an MBA-educated person may not be ready to take on imaging management. As an example, when buying a very expe