An Introduction to Online Computation

An Introduction to Online Computation PDF Author: Dennis Komm
Publisher: Springer
ISBN: 3319427490
Category : Computers
Languages : en
Pages : 360

Get Book Here

Book Description
This textbook explains online computation in different settings, with particular emphasis on randomization and advice complexity. These settings are analyzed for various online problems such as the paging problem, the k-server problem, job shop scheduling, the knapsack problem, the bit guessing problem, and problems on graphs. This book is appropriate for undergraduate and graduate students of computer science, assuming a basic knowledge in algorithmics and discrete mathematics. Also researchers will find this a valuable reference for the recent field of advice complexity.

An Introduction to Online Computation

An Introduction to Online Computation PDF Author: Dennis Komm
Publisher: Springer
ISBN: 3319427490
Category : Computers
Languages : en
Pages : 360

Get Book Here

Book Description
This textbook explains online computation in different settings, with particular emphasis on randomization and advice complexity. These settings are analyzed for various online problems such as the paging problem, the k-server problem, job shop scheduling, the knapsack problem, the bit guessing problem, and problems on graphs. This book is appropriate for undergraduate and graduate students of computer science, assuming a basic knowledge in algorithmics and discrete mathematics. Also researchers will find this a valuable reference for the recent field of advice complexity.

Introduction to Computation and Programming Using Python, second edition

Introduction to Computation and Programming Using Python, second edition PDF Author: John V. Guttag
Publisher: MIT Press
ISBN: 0262529629
Category : Computers
Languages : en
Pages : 466

Get Book Here

Book Description
The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.

Introduction to the Theory of Computation

Introduction to the Theory of Computation PDF Author: Michael Sipser
Publisher: Cengage Learning
ISBN: 9781133187790
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

An Introduction to Statistical Computing

An Introduction to Statistical Computing PDF Author: Jochen Voss
Publisher: John Wiley & Sons
ISBN: 1118728025
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course.

Explorations in Computing

Explorations in Computing PDF Author: John S. Conery
Publisher: CRC Press
ISBN: 1466572450
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
An Active Learning Approach to Teaching the Main Ideas in Computing Explorations in Computing: An Introduction to Computer Science and Python Programming teaches computer science students how to use programming skills to explore fundamental concepts and computational approaches to solving problems. Tbook gives beginning students an introduction to

Introduction to Computational Science

Introduction to Computational Science PDF Author: Angela B. Shiflet
Publisher: Princeton University Press
ISBN: 140085055X
Category : Computers
Languages : en
Pages : 857

Get Book Here

Book Description
The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors

Computational Complexity

Computational Complexity PDF Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609

Get Book Here

Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

Deep Learning

Deep Learning PDF Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801

Get Book Here

Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

An Introduction to Modern Mathematical Computing

An Introduction to Modern Mathematical Computing PDF Author: Jonathan M. Borwein
Publisher: Springer Science & Business Media
ISBN: 1461442532
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.

Introduction to Evolutionary Computing

Introduction to Evolutionary Computing PDF Author: A.E. Eiben
Publisher: Springer Science & Business Media
ISBN: 9783540401841
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.