An Introduction to Differentiable Manifolds and Riemannian Geometry

An Introduction to Differentiable Manifolds and Riemannian Geometry PDF Author:
Publisher: Academic Press
ISBN: 0080873790
Category : Mathematics
Languages : en
Pages : 441

Get Book Here

Book Description
An Introduction to Differentiable Manifolds and Riemannian Geometry

An Introduction to Differentiable Manifolds and Riemannian Geometry

An Introduction to Differentiable Manifolds and Riemannian Geometry PDF Author:
Publisher: Academic Press
ISBN: 0080873790
Category : Mathematics
Languages : en
Pages : 441

Get Book Here

Book Description
An Introduction to Differentiable Manifolds and Riemannian Geometry

Differential and Riemannian Manifolds

Differential and Riemannian Manifolds PDF Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461241820
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).

Manifolds and Differential Geometry

Manifolds and Differential Geometry PDF Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690

Get Book Here

Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.

Introduction to Riemannian Manifolds

Introduction to Riemannian Manifolds PDF Author: John M. Lee
Publisher: Springer
ISBN: 3319917552
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry PDF Author: Leonor Godinho
Publisher: Springer
ISBN: 3319086669
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Riemannian Manifolds

Riemannian Manifolds PDF Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387227261
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers PDF Author: P.M. Gadea
Publisher: Springer Science & Business Media
ISBN: 9048135648
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.

An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised

An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised PDF Author: William Munger Boothby
Publisher: Gulf Professional Publishing
ISBN: 9780121160517
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
The second edition of An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised has sold over 6,000 copies since publication in 1986 and this revision will make it even more useful. This is the only book available that is approachable by "beginners" in this subject. It has become an essential introduction to the subject for mathematics students, engineers, physicists, and economists who need to learn how to apply these vital methods. It is also the only book that thoroughly reviews certain areas of advanced calculus that are necessary to understand the subject. Line and surface integrals Divergence and curl of vector fields

Foundations of Differentiable Manifolds and Lie Groups

Foundations of Differentiable Manifolds and Lie Groups PDF Author: Frank W. Warner
Publisher: Springer Science & Business Media
ISBN: 1475717997
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

An Introduction to Manifolds

An Introduction to Manifolds PDF Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.