Author: Ian F. Blake
Publisher: Academic Press
ISBN: 1483260291
Category : Mathematics
Languages : en
Pages : 244
Book Description
An Introduction to Algebraic and Combinatorial Coding Theory focuses on the principles, operations, and approaches involved in the combinatorial coding theory, including linear transformations, chain groups, vector spaces, and combinatorial constructions. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on quadratic residues and codes, self-dual and quasicyclic codes, balanced incomplete block designs and codes, polynomial approach to coding, and linear transformations of vector spaces over finite fields. The text then examines coding and combinatorics, including chains and chain groups, equidistant codes, matroids, graphs, and coding, matroids, and dual chain groups. The manuscript also ponders on Möbius inversion formula, Lucas's theorem, and Mathieu groups. The publication is a valuable source of information for mathematicians and researchers interested in the combinatorial coding theory.
An Introduction to Algebraic and Combinatorial Coding Theory
Author: Ian F. Blake
Publisher: Academic Press
ISBN: 1483260291
Category : Mathematics
Languages : en
Pages : 244
Book Description
An Introduction to Algebraic and Combinatorial Coding Theory focuses on the principles, operations, and approaches involved in the combinatorial coding theory, including linear transformations, chain groups, vector spaces, and combinatorial constructions. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on quadratic residues and codes, self-dual and quasicyclic codes, balanced incomplete block designs and codes, polynomial approach to coding, and linear transformations of vector spaces over finite fields. The text then examines coding and combinatorics, including chains and chain groups, equidistant codes, matroids, graphs, and coding, matroids, and dual chain groups. The manuscript also ponders on Möbius inversion formula, Lucas's theorem, and Mathieu groups. The publication is a valuable source of information for mathematicians and researchers interested in the combinatorial coding theory.
Publisher: Academic Press
ISBN: 1483260291
Category : Mathematics
Languages : en
Pages : 244
Book Description
An Introduction to Algebraic and Combinatorial Coding Theory focuses on the principles, operations, and approaches involved in the combinatorial coding theory, including linear transformations, chain groups, vector spaces, and combinatorial constructions. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on quadratic residues and codes, self-dual and quasicyclic codes, balanced incomplete block designs and codes, polynomial approach to coding, and linear transformations of vector spaces over finite fields. The text then examines coding and combinatorics, including chains and chain groups, equidistant codes, matroids, graphs, and coding, matroids, and dual chain groups. The manuscript also ponders on Möbius inversion formula, Lucas's theorem, and Mathieu groups. The publication is a valuable source of information for mathematicians and researchers interested in the combinatorial coding theory.
An Introduction to Algebraic and Combinatorial Coding Theory
Author: Ian F. Blake
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 262
Book Description
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 262
Book Description
Coding Theory
Author: Jacobus H. van Lint
Publisher: Springer
ISBN: 3662207125
Category : Mathematics
Languages : en
Pages : 145
Book Description
Publisher: Springer
ISBN: 3662207125
Category : Mathematics
Languages : en
Pages : 145
Book Description
The Mathematical Theory of Coding
Author: Ian F. Blake
Publisher: Academic Press
ISBN: 1483260593
Category : Mathematics
Languages : en
Pages : 369
Book Description
The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.
Publisher: Academic Press
ISBN: 1483260593
Category : Mathematics
Languages : en
Pages : 369
Book Description
The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.
An Introduction to Error Correcting Codes with Applications
Author: Scott A. Vanstone
Publisher: Springer Science & Business Media
ISBN: 1475720327
Category : Technology & Engineering
Languages : en
Pages : 297
Book Description
5. 2 Rings and Ideals 148 5. 3 Ideals and Cyclic Subspaces 152 5. 4 Generator Matrices and Parity-Check Matrices 159 5. 5 Encoding Cyclic Codest 163 5. 6 Syndromes and Simple Decoding Procedures 168 5. 7 Burst Error Correcting 175 5. 8 Finite Fields and Factoring xn-l over GF(q) 181 5. 9 Another Method for Factoring xn-l over GF(q)t 187 5. 10 Exercises 193 Chapter 6 BCH Codes and Bounds for Cyclic Codes 6. 1 Introduction 201 6. 2 BCH Codes and the BCH Bound 205 6. 3 Bounds for Cyclic Codest 210 6. 4 Decoding BCH Codes 215 6. 5 Linearized Polynomials and Finding Roots of Polynomialst 224 6. 6 Exercises 231 Chapter 7 Error Correction Techniques and Digital Audio Recording 7. 1 Introduction 237 7. 2 Reed-Solomon Codes 237 7. 3 Channel Erasures 240 7. 4 BCH Decoding with Erasures 244 7. 5 Interleaving 250 7. 6 Error Correction and Digital Audio Recording 256 7.
Publisher: Springer Science & Business Media
ISBN: 1475720327
Category : Technology & Engineering
Languages : en
Pages : 297
Book Description
5. 2 Rings and Ideals 148 5. 3 Ideals and Cyclic Subspaces 152 5. 4 Generator Matrices and Parity-Check Matrices 159 5. 5 Encoding Cyclic Codest 163 5. 6 Syndromes and Simple Decoding Procedures 168 5. 7 Burst Error Correcting 175 5. 8 Finite Fields and Factoring xn-l over GF(q) 181 5. 9 Another Method for Factoring xn-l over GF(q)t 187 5. 10 Exercises 193 Chapter 6 BCH Codes and Bounds for Cyclic Codes 6. 1 Introduction 201 6. 2 BCH Codes and the BCH Bound 205 6. 3 Bounds for Cyclic Codest 210 6. 4 Decoding BCH Codes 215 6. 5 Linearized Polynomials and Finding Roots of Polynomialst 224 6. 6 Exercises 231 Chapter 7 Error Correction Techniques and Digital Audio Recording 7. 1 Introduction 237 7. 2 Reed-Solomon Codes 237 7. 3 Channel Erasures 240 7. 4 BCH Decoding with Erasures 244 7. 5 Interleaving 250 7. 6 Error Correction and Digital Audio Recording 256 7.
A First Course in Coding Theory
Author: Raymond Hill
Publisher: Oxford University Press
ISBN: 9780198538035
Category : Computers
Languages : en
Pages : 268
Book Description
Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.
Publisher: Oxford University Press
ISBN: 9780198538035
Category : Computers
Languages : en
Pages : 268
Book Description
Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.
Coding Theory And Cryptology
Author: Harald Niederreiter
Publisher: World Scientific
ISBN: 981448766X
Category : Mathematics
Languages : en
Pages : 460
Book Description
The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
Publisher: World Scientific
ISBN: 981448766X
Category : Mathematics
Languages : en
Pages : 460
Book Description
The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.
A Course in Algebraic Error-Correcting Codes
Author: Simeon Ball
Publisher: Springer Nature
ISBN: 3030411532
Category : Mathematics
Languages : en
Pages : 185
Book Description
This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the aim of highlighting how coding can have an important real-world impact. Because it carefully balances both theory and applications, this book will be an indispensable resource for readers seeking a timely treatment of error-correcting codes. Early chapters cover fundamental concepts, introducing Shannon’s theorem, asymptotically good codes and linear codes. The book then goes on to cover other types of codes including chapters on cyclic codes, maximum distance separable codes, LDPC codes, p-adic codes, amongst others. Those undertaking independent study will appreciate the helpful exercises with selected solutions. A Course in Algebraic Error-Correcting Codes suits an interdisciplinary audience at the Masters level, including students of mathematics, engineering, physics, and computer science. Advanced undergraduates will find this a useful resource as well. An understanding of linear algebra is assumed.
Publisher: Springer Nature
ISBN: 3030411532
Category : Mathematics
Languages : en
Pages : 185
Book Description
This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the aim of highlighting how coding can have an important real-world impact. Because it carefully balances both theory and applications, this book will be an indispensable resource for readers seeking a timely treatment of error-correcting codes. Early chapters cover fundamental concepts, introducing Shannon’s theorem, asymptotically good codes and linear codes. The book then goes on to cover other types of codes including chapters on cyclic codes, maximum distance separable codes, LDPC codes, p-adic codes, amongst others. Those undertaking independent study will appreciate the helpful exercises with selected solutions. A Course in Algebraic Error-Correcting Codes suits an interdisciplinary audience at the Masters level, including students of mathematics, engineering, physics, and computer science. Advanced undergraduates will find this a useful resource as well. An understanding of linear algebra is assumed.
Software Engineer's Reference Book
Author: John A McDermid
Publisher: Elsevier
ISBN: 1483105083
Category : Technology & Engineering
Languages : en
Pages : 1137
Book Description
Software Engineer's Reference Book provides the fundamental principles and general approaches, contemporary information, and applications for developing the software of computer systems. The book is comprised of three main parts, an epilogue, and a comprehensive index. The first part covers the theory of computer science and relevant mathematics. Topics under this section include logic, set theory, Turing machines, theory of computation, and computational complexity. Part II is a discussion of software development methods, techniques and technology primarily based around a conventional view of the software life cycle. Topics discussed include methods such as CORE, SSADM, and SREM, and formal methods including VDM and Z. Attention is also given to other technical activities in the life cycle including testing and prototyping. The final part describes the techniques and standards which are relevant in producing particular classes of application. The text will be of great use to software engineers, software project managers, and students of computer science.
Publisher: Elsevier
ISBN: 1483105083
Category : Technology & Engineering
Languages : en
Pages : 1137
Book Description
Software Engineer's Reference Book provides the fundamental principles and general approaches, contemporary information, and applications for developing the software of computer systems. The book is comprised of three main parts, an epilogue, and a comprehensive index. The first part covers the theory of computer science and relevant mathematics. Topics under this section include logic, set theory, Turing machines, theory of computation, and computational complexity. Part II is a discussion of software development methods, techniques and technology primarily based around a conventional view of the software life cycle. Topics discussed include methods such as CORE, SSADM, and SREM, and formal methods including VDM and Z. Attention is also given to other technical activities in the life cycle including testing and prototyping. The final part describes the techniques and standards which are relevant in producing particular classes of application. The text will be of great use to software engineers, software project managers, and students of computer science.
Algebraic Combinatorics
Author: Chris Godsil
Publisher: Routledge
ISBN: 1351467514
Category : Mathematics
Languages : en
Pages : 381
Book Description
This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics.
Publisher: Routledge
ISBN: 1351467514
Category : Mathematics
Languages : en
Pages : 381
Book Description
This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics.