An Intermediate Course in Probability

An Intermediate Course in Probability PDF Author: Allan Gut
Publisher: Springer Science & Business Media
ISBN: 1475724314
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
The purpose of this book is to provide the reader with a solid background and understanding of the basic results and methods in probability the ory before entering into more advanced courses (in probability and/or statistics). The presentation is fairly thorough and detailed with many solved examples. Several examples are solved with different methods in order to illustrate their different levels of sophistication, their pros, and their cons. The motivation for this style of exposition is that experi ence has proved that the hard part in courses of this kind usually in the application of the results and methods; to know how, when, and where to apply what; and then, technically, to solve a given problem once one knows how to proceed. Exercises are spread out along the way, and every chapter ends with a large selection of problems. Chapters I through VI focus on some central areas of what might be called pure probability theory: multivariate random variables, condi tioning, transforms, order variables, the multivariate normal distribution, and convergence. A final chapter is devoted to the Poisson process be cause of its fundamental role in the theory of stochastic processes, but also because it provides an excellent application of the results and meth ods acquired earlier in the book. As an extra bonus, several facts about this process, which are frequently more or less taken for granted, are thereby properly verified.

An Intermediate Course in Probability

An Intermediate Course in Probability PDF Author: Allan Gut
Publisher: Springer Science & Business Media
ISBN: 1475724314
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
The purpose of this book is to provide the reader with a solid background and understanding of the basic results and methods in probability the ory before entering into more advanced courses (in probability and/or statistics). The presentation is fairly thorough and detailed with many solved examples. Several examples are solved with different methods in order to illustrate their different levels of sophistication, their pros, and their cons. The motivation for this style of exposition is that experi ence has proved that the hard part in courses of this kind usually in the application of the results and methods; to know how, when, and where to apply what; and then, technically, to solve a given problem once one knows how to proceed. Exercises are spread out along the way, and every chapter ends with a large selection of problems. Chapters I through VI focus on some central areas of what might be called pure probability theory: multivariate random variables, condi tioning, transforms, order variables, the multivariate normal distribution, and convergence. A final chapter is devoted to the Poisson process be cause of its fundamental role in the theory of stochastic processes, but also because it provides an excellent application of the results and meth ods acquired earlier in the book. As an extra bonus, several facts about this process, which are frequently more or less taken for granted, are thereby properly verified.

Introduction to Counting and Probability

Introduction to Counting and Probability PDF Author: David Patrick
Publisher:
ISBN: 9781934124109
Category : Counting
Languages : en
Pages : 0

Get Book Here

Book Description


Probability: A Graduate Course

Probability: A Graduate Course PDF Author: Allan Gut
Publisher: Springer Science & Business Media
ISBN: 0387273328
Category : Mathematics
Languages : en
Pages : 617

Get Book Here

Book Description
This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.

Intermediate Probability

Intermediate Probability PDF Author: Marc S. Paolella
Publisher: John Wiley & Sons
ISBN: 9780470035054
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
Intermediate Probability is the natural extension of the author's Fundamental Probability. It details several highly important topics, from standard ones such as order statistics, multivariate normal, and convergence concepts, to more advanced ones which are usually not addressed at this mathematical level, or have never previously appeared in textbook form. The author adopts a computational approach throughout, allowing the reader to directly implement the methods, thus greatly enhancing the learning experience and clearly illustrating the applicability, strengths, and weaknesses of the theory. The book: Places great emphasis on the numeric computation of convolutions of random variables, via numeric integration, inversion theorems, fast Fourier transforms, saddlepoint approximations, and simulation. Provides introductory material to required mathematical topics such as complex numbers, Laplace and Fourier transforms, matrix algebra, confluent hypergeometric functions, digamma functions, and Bessel functions. Presents full derivation and numerous computational methods of the stable Paretian and the singly and doubly non-central distributions. A whole chapter is dedicated to mean-variance mixtures, NIG, GIG, generalized hyperbolic and numerous related distributions. A whole chapter is dedicated to nesting, generalizing, and asymmetric extensions of popular distributions, as have become popular in empirical finance and other applications. Provides all essential programming code in Matlab and R. The user-friendly style of writing and attention to detail means that self-study is easily possible, making the book ideal for senior undergraduate and graduate students of mathematics, statistics, econometrics, finance, insurance, and computer science, as well as researchers and professional statisticians working in these fields.

Introduction to Probability

Introduction to Probability PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 188652923X
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.

An Intermediate Course in Probability

An Intermediate Course in Probability PDF Author: Allan Gut
Publisher: Springer Science & Business Media
ISBN: 1441901620
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
This is the only book that gives a rigorous and comprehensive treatment with lots of examples, exercises, remarks on this particular level between the standard first undergraduate course and the first graduate course based on measure theory. There is no competitor to this book. The book can be used in classrooms as well as for self-study.

Introduction to Probability

Introduction to Probability PDF Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Exercises in Probability

Exercises in Probability PDF Author: T. Cacoullos
Publisher: Springer Science & Business Media
ISBN: 1461245265
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
The author, the founder of the Greek Statistical Institute, has based this book on the two volumes of his Greek edition which has been used by over ten thousand students during the past fifteen years. It can serve as a companion text for an introductory or intermediate level probability course. Those will benefit most who have a good grasp of calculus, yet, many others, with less formal mathematical background can also benefit from the large variety of solved problems ranging from classical combinatorial problems to limit theorems and the law of iterated logarithms. It contains 329 problems with solutions as well as an addendum of over 160 exercises and certain complements of theory and problems.

Probability

Probability PDF Author: Geoffrey Grimmett
Publisher: OUP Oxford
ISBN: 0191019933
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
Probability is an area of mathematics of tremendous contemporary importance across all aspects of human endeavour. This book is a compact account of the basic features of probability and random processes at the level of first and second year mathematics undergraduates and Masters' students in cognate fields. It is suitable for a first course in probability, plus a follow-up course in random processes including Markov chains. A special feature is the authors' attention to rigorous mathematics: not everything is rigorous, but the need for rigour is explained at difficult junctures. The text is enriched by simple exercises, together with problems (with very brief hints) many of which are taken from final examinations at Cambridge and Oxford. The first eight chapters form a course in basic probability, being an account of events, random variables, and distributions - discrete and continuous random variables are treated separately - together with simple versions of the law of large numbers and the central limit theorem. There is an account of moment generating functions and their applications. The following three chapters are about branching processes, random walks, and continuous-time random processes such as the Poisson process. The final chapter is a fairly extensive account of Markov chains in discrete time. This second edition develops the success of the first edition through an updated presentation, the extensive new chapter on Markov chains, and a number of new sections to ensure comprehensive coverage of the syllabi at major universities.

Probability

Probability PDF Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 113949113X
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.