Author: Selim G. Akl
Publisher: Academic Press
ISBN: 148326808X
Category : Reference
Languages : en
Pages : 244
Book Description
Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the respective primary memories of the computers (random access memory), or in a single shared memory. SIMD processors communicate through an interconnection network or the processors communicate through a common and shared memory. The text also investigates the case of external sorting in which the sequence to be sorted is bigger than the available primary memory. In this case, the algorithms used in external sorting is very similar to those used to describe internal sorting, that is, when the sequence can fit in the primary memory, The book explains that an algorithm can reach its optimum possible operating time for sorting when it is running on a particular set of architecture, depending on a constant multiplicative factor. The text is suitable for computer engineers and scientists interested in parallel algorithms.
Parallel Sorting Algorithms
Author: Selim G. Akl
Publisher: Academic Press
ISBN: 148326808X
Category : Reference
Languages : en
Pages : 244
Book Description
Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the respective primary memories of the computers (random access memory), or in a single shared memory. SIMD processors communicate through an interconnection network or the processors communicate through a common and shared memory. The text also investigates the case of external sorting in which the sequence to be sorted is bigger than the available primary memory. In this case, the algorithms used in external sorting is very similar to those used to describe internal sorting, that is, when the sequence can fit in the primary memory, The book explains that an algorithm can reach its optimum possible operating time for sorting when it is running on a particular set of architecture, depending on a constant multiplicative factor. The text is suitable for computer engineers and scientists interested in parallel algorithms.
Publisher: Academic Press
ISBN: 148326808X
Category : Reference
Languages : en
Pages : 244
Book Description
Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the respective primary memories of the computers (random access memory), or in a single shared memory. SIMD processors communicate through an interconnection network or the processors communicate through a common and shared memory. The text also investigates the case of external sorting in which the sequence to be sorted is bigger than the available primary memory. In this case, the algorithms used in external sorting is very similar to those used to describe internal sorting, that is, when the sequence can fit in the primary memory, The book explains that an algorithm can reach its optimum possible operating time for sorting when it is running on a particular set of architecture, depending on a constant multiplicative factor. The text is suitable for computer engineers and scientists interested in parallel algorithms.
GPU Gems 2
Author: Matt Pharr
Publisher: Addison-Wesley Professional
ISBN: 9780321335593
Category : Computers
Languages : en
Pages : 814
Book Description
More useful techniques, tips, and tricks for harnessing the power of the new generation of powerful GPUs.
Publisher: Addison-Wesley Professional
ISBN: 9780321335593
Category : Computers
Languages : en
Pages : 814
Book Description
More useful techniques, tips, and tricks for harnessing the power of the new generation of powerful GPUs.
Sequential and Parallel Algorithms and Data Structures
Author: Peter Sanders
Publisher: Springer Nature
ISBN: 3030252094
Category : Computers
Languages : en
Pages : 516
Book Description
This textbook is a concise introduction to the basic toolbox of structures that allow efficient organization and retrieval of data, key algorithms for problems on graphs, and generic techniques for modeling, understanding, and solving algorithmic problems. The authors aim for a balance between simplicity and efficiency, between theory and practice, and between classical results and the forefront of research. Individual chapters cover arrays and linked lists, hash tables and associative arrays, sorting and selection, priority queues, sorted sequences, graph representation, graph traversal, shortest paths, minimum spanning trees, optimization, collective communication and computation, and load balancing. The authors also discuss important issues such as algorithm engineering, memory hierarchies, algorithm libraries, and certifying algorithms. Moving beyond the sequential algorithms and data structures of the earlier related title, this book takes into account the paradigm shift towards the parallel processing required to solve modern performance-critical applications and how this impacts on the teaching of algorithms. The book is suitable for undergraduate and graduate students and professionals familiar with programming and basic mathematical language. Most chapters have the same basic structure: the authors discuss a problem as it occurs in a real-life situation, they illustrate the most important applications, and then they introduce simple solutions as informally as possible and as formally as necessary so the reader really understands the issues at hand. As they move to more advanced and optional issues, their approach gradually leads to a more mathematical treatment, including theorems and proofs. The book includes many examples, pictures, informal explanations, and exercises, and the implementation notes introduce clean, efficient implementations in languages such as C++ and Java.
Publisher: Springer Nature
ISBN: 3030252094
Category : Computers
Languages : en
Pages : 516
Book Description
This textbook is a concise introduction to the basic toolbox of structures that allow efficient organization and retrieval of data, key algorithms for problems on graphs, and generic techniques for modeling, understanding, and solving algorithmic problems. The authors aim for a balance between simplicity and efficiency, between theory and practice, and between classical results and the forefront of research. Individual chapters cover arrays and linked lists, hash tables and associative arrays, sorting and selection, priority queues, sorted sequences, graph representation, graph traversal, shortest paths, minimum spanning trees, optimization, collective communication and computation, and load balancing. The authors also discuss important issues such as algorithm engineering, memory hierarchies, algorithm libraries, and certifying algorithms. Moving beyond the sequential algorithms and data structures of the earlier related title, this book takes into account the paradigm shift towards the parallel processing required to solve modern performance-critical applications and how this impacts on the teaching of algorithms. The book is suitable for undergraduate and graduate students and professionals familiar with programming and basic mathematical language. Most chapters have the same basic structure: the authors discuss a problem as it occurs in a real-life situation, they illustrate the most important applications, and then they introduce simple solutions as informally as possible and as formally as necessary so the reader really understands the issues at hand. As they move to more advanced and optional issues, their approach gradually leads to a more mathematical treatment, including theorems and proofs. The book includes many examples, pictures, informal explanations, and exercises, and the implementation notes introduce clean, efficient implementations in languages such as C++ and Java.
Introduction to Parallel Algorithms
Author: C. Xavier
Publisher: John Wiley & Sons
ISBN: 9780471251828
Category : Computers
Languages : en
Pages : 388
Book Description
Parallel algorithms Made Easy The complexity of today's applications coupled with the widespread use of parallel computing has made the design and analysis of parallel algorithms topics of growing interest. This volume fills a need in the field for an introductory treatment of parallel algorithms-appropriate even at the undergraduate level, where no other textbooks on the subject exist. It features a systematic approach to the latest design techniques, providing analysis and implementation details for each parallel algorithm described in the book. Introduction to Parallel Algorithms covers foundations of parallel computing; parallel algorithms for trees and graphs; parallel algorithms for sorting, searching, and merging; and numerical algorithms. This remarkable book: * Presents basic concepts in clear and simple terms * Incorporates numerous examples to enhance students' understanding * Shows how to develop parallel algorithms for all classical problems in computer science, mathematics, and engineering * Employs extensive illustrations of new design techniques * Discusses parallel algorithms in the context of PRAM model * Includes end-of-chapter exercises and detailed references on parallel computing. This book enables universities to offer parallel algorithm courses at the senior undergraduate level in computer science and engineering. It is also an invaluable text/reference for graduate students, scientists, and engineers in computer science, mathematics, and engineering.
Publisher: John Wiley & Sons
ISBN: 9780471251828
Category : Computers
Languages : en
Pages : 388
Book Description
Parallel algorithms Made Easy The complexity of today's applications coupled with the widespread use of parallel computing has made the design and analysis of parallel algorithms topics of growing interest. This volume fills a need in the field for an introductory treatment of parallel algorithms-appropriate even at the undergraduate level, where no other textbooks on the subject exist. It features a systematic approach to the latest design techniques, providing analysis and implementation details for each parallel algorithm described in the book. Introduction to Parallel Algorithms covers foundations of parallel computing; parallel algorithms for trees and graphs; parallel algorithms for sorting, searching, and merging; and numerical algorithms. This remarkable book: * Presents basic concepts in clear and simple terms * Incorporates numerous examples to enhance students' understanding * Shows how to develop parallel algorithms for all classical problems in computer science, mathematics, and engineering * Employs extensive illustrations of new design techniques * Discusses parallel algorithms in the context of PRAM model * Includes end-of-chapter exercises and detailed references on parallel computing. This book enables universities to offer parallel algorithm courses at the senior undergraduate level in computer science and engineering. It is also an invaluable text/reference for graduate students, scientists, and engineers in computer science, mathematics, and engineering.
Introduction to Parallel Computing
Author: Vipin Kumar
Publisher: Addison Wesley Longman
ISBN:
Category : Computers
Languages : en
Pages : 632
Book Description
Mathematics of Computing -- Parallelism.
Publisher: Addison Wesley Longman
ISBN:
Category : Computers
Languages : en
Pages : 632
Book Description
Mathematics of Computing -- Parallelism.
Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Learning with Kernels
Author: Bernhard Scholkopf
Publisher: MIT Press
ISBN: 0262536579
Category : Computers
Languages : en
Pages : 645
Book Description
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.
Publisher: MIT Press
ISBN: 0262536579
Category : Computers
Languages : en
Pages : 645
Book Description
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.
Designing Efficient Algorithms for Parallel Computers
Author: Michael Jay Quinn
Publisher: McGraw-Hill Companies
ISBN:
Category : Computers
Languages : en
Pages : 312
Book Description
Mathematics of Computing -- Parallelism.
Publisher: McGraw-Hill Companies
ISBN:
Category : Computers
Languages : en
Pages : 312
Book Description
Mathematics of Computing -- Parallelism.
Introduction to Parallel Processing
Author: Behrooz Parhami
Publisher: Springer Science & Business Media
ISBN: 0306469642
Category : Business & Economics
Languages : en
Pages : 512
Book Description
THE CONTEXT OF PARALLEL PROCESSING The field of digital computer architecture has grown explosively in the past two decades. Through a steady stream of experimental research, tool-building efforts, and theoretical studies, the design of an instruction-set architecture, once considered an art, has been transformed into one of the most quantitative branches of computer technology. At the same time, better understanding of various forms of concurrency, from standard pipelining to massive parallelism, and invention of architectural structures to support a reasonably efficient and user-friendly programming model for such systems, has allowed hardware performance to continue its exponential growth. This trend is expected to continue in the near future. This explosive growth, linked with the expectation that performance will continue its exponential rise with each new generation of hardware and that (in stark contrast to software) computer hardware will function correctly as soon as it comes off the assembly line, has its down side. It has led to unprecedented hardware complexity and almost intolerable dev- opment costs. The challenge facing current and future computer designers is to institute simplicity where we now have complexity; to use fundamental theories being developed in this area to gain performance and ease-of-use benefits from simpler circuits; to understand the interplay between technological capabilities and limitations, on the one hand, and design decisions based on user and application requirements on the other.
Publisher: Springer Science & Business Media
ISBN: 0306469642
Category : Business & Economics
Languages : en
Pages : 512
Book Description
THE CONTEXT OF PARALLEL PROCESSING The field of digital computer architecture has grown explosively in the past two decades. Through a steady stream of experimental research, tool-building efforts, and theoretical studies, the design of an instruction-set architecture, once considered an art, has been transformed into one of the most quantitative branches of computer technology. At the same time, better understanding of various forms of concurrency, from standard pipelining to massive parallelism, and invention of architectural structures to support a reasonably efficient and user-friendly programming model for such systems, has allowed hardware performance to continue its exponential growth. This trend is expected to continue in the near future. This explosive growth, linked with the expectation that performance will continue its exponential rise with each new generation of hardware and that (in stark contrast to software) computer hardware will function correctly as soon as it comes off the assembly line, has its down side. It has led to unprecedented hardware complexity and almost intolerable dev- opment costs. The challenge facing current and future computer designers is to institute simplicity where we now have complexity; to use fundamental theories being developed in this area to gain performance and ease-of-use benefits from simpler circuits; to understand the interplay between technological capabilities and limitations, on the one hand, and design decisions based on user and application requirements on the other.
Using OpenMP
Author: Barbara Chapman
Publisher: MIT Press
ISBN: 0262533022
Category : Computers
Languages : en
Pages : 378
Book Description
A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.
Publisher: MIT Press
ISBN: 0262533022
Category : Computers
Languages : en
Pages : 378
Book Description
A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.