An Evolutionary and Environmental Perspective of the Interaction of Nanomaterials with the Immune System-The Outcomes of the EU Project PANDORA

An Evolutionary and Environmental Perspective of the Interaction of Nanomaterials with the Immune System-The Outcomes of the EU Project PANDORA PDF Author: Diana Boraschi
Publisher: Mdpi AG
ISBN: 9783036539478
Category : Medical
Languages : en
Pages : 218

Get Book Here

Book Description
The book collects scientific contributions aiming at describing the common mechanism, across living species, by which innate immunity interacts with nanomaterials with the goal of harnessing such interactions for improving environmental and human safety and exploiting them for modulating immunity in vaccination strategies.

Interaction of Nanomaterials with the Immune System

Interaction of Nanomaterials with the Immune System PDF Author: James C. Bonner
Publisher: Springer Nature
ISBN: 3030339629
Category : Medical
Languages : en
Pages : 229

Get Book Here

Book Description
This book covers the latest information related to understanding immune responses to engineered nanomaterials (ENMs). Many ENMs used in both the consumer and biomedical fields have been reported to elicit adverse immune responses ranging from innate immune responses such as complement activation to changes in adaptive immunity that influence pathogen responses and promote disease states such as asthma. Interaction of Nanomaterials with the Immune System covers the most up to date information on our understanding of immune responses to ENMs across a wide range of topics including innate immunity, allergic immune responses, adaptive provides the reader with (1) up to date understanding of immune responses to ENMs; (2) current testing methods; and (3) appropriate models including alternative testing strategies for evaluating immunotoxicity of ENMs.

Interaction of Nanomaterials With the Immune System: Role in Nanosafety and Nanomedicine

Interaction of Nanomaterials With the Immune System: Role in Nanosafety and Nanomedicine PDF Author: Paola Italiani
Publisher: Frontiers Media SA
ISBN: 2889453871
Category :
Languages : en
Pages : 177

Get Book Here

Book Description
The immune system has the double role of maintaining tissue integrity and homeostasis and of protecting the organism from possible dangers, from invading pathogens to environmentally-borne dangerous chemicals. New chemicals recognisable by the immune system are engineered nanomaterials/ nanoparticles, new agents in our environment that are becoming common due to their presence in many products, from constructions and building material (e.g., solar cells, pigments and paints, tilesand masonry materials) to daily products (e.g., food packaging, cosmetics, and cigarettes). Human beings can be accidentally exposed to engineered nanomaterials when these are released from products containing them or during production in workplaces. Furthermore, intentional exposure occurs in medicine, as engineered nanoparticles are used as tools for improving delivery of drugs and vaccines, vaccine adjuvants and contrast agents in therapeutic, preventive and diagnostic strategies. Nanoparticles that come in contact with the immune system after unintentional exposure need to be eliminated from the organism as they represent a potential threat. In this case, however, due to their peculiar characteristics of size, shape, surface charge and persistence, nanoparticles may elicit undesirable reactions and have detrimental effects on the immune system, such as cytotoxicity, inflammation, anaphylaxis, immunosuppression. Conversely, nanomedicines need to escape immune recognition/elimination and must persist in the organism long enough for reaching their target and exerting their beneficial effects. Immune cells and molecules at the body surface (airway and digestive mucosae, skin) are the first that come in contact with nanomaterials upon accidental exposure, while immune effectors in blood are those that more easily come in contact with nanomedical products. Thus, evaluating the interaction of the immune system with nanoparticles/nanomaterials is a topic of key importance both in nanotoxicology and in nanomedicine. Immuno-nanosafety studies consider both accidental exposure to nanoparticles, which may occur by skin contact, ingestion or inhalation (at doses and with a frequency that are not known), and medical exposure, which takes place with a defined administration schedule (route, dose, frequency). Many studies focus on the interaction between the immune system and nanoparticles that, for medical purposes, have been specifically modified to stimulate immunity or to avoid immune recognition, as in the case of vaccine carriers/adjuvants or drug delivery systems, respectively. The aims of this Research Topic is to provide an overview of recent strategies: 1.for assessing the immunosafety of engineered nanomaterials/nanoparticles, in particular in terms of activation of inflammatory responses, such as complement activation and allergic reactions, based on the nanomaterial intrinsic characteristics and on the possible carry-over of bioactive contaminants such as LPS. Production of new nanoparticles taking into account their effects on immune responses, in order to avoid undesirable effects on one hand, and to design particles with desirable effects for medical applications on the other hand; 2.for designing more effective nanomedicines by either avoiding or exploiting their interaction with the immune systems, with particular focus on cancer diagnosis and therapy, and vaccination. This collection of articles gives a comprehensive view of the state-of-the-art of the interaction of nanoparticles with the immune system from the two perspectives of safety and medical use, and aims at providing immunologists with the relevant knowledge for designing improved strategies for immunologically safe nanomaterial applications.

Nanoparticles and the Immune System

Nanoparticles and the Immune System PDF Author: Diana Boraschi
Publisher: Academic Press
ISBN: 0124079210
Category : Medical
Languages : en
Pages : 139

Get Book Here

Book Description
Nanoparticles and the Immune System provides a reference text for toxicologists, materials scientists and regulators and covers the key issues of interaction of nanomaterials with the immune system. The book discusses several issues that toxicologists and regulators need to know: identification of endpoints that are relevant for assessing hazard, evaluating impact on immunologically frail populations, and how to evaluate chronic/cumulative effects. In addition, the book addresses the possibility of turning the immunomodulating properties of certain nanomaterials to our advantage for amplifying immune responses in certain diseases or preventive strategies (e.g. vaccination). Identifies endpoints relevant for assessing hazardous situations, evaluating the impact on immunologically frail populations and how to gauge chronic/cumulative effects Raises the awareness of the importance of knowing the effects of the new nanomaterials on our immune system

Interaction of Nanomaterials with the Immune System: Role in Nanosafety and Nanomedicinenanomedicine

Interaction of Nanomaterials with the Immune System: Role in Nanosafety and Nanomedicinenanomedicine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The immune system has the double role of maintaining tissue integrity and homeostasis and of protecting the organism from possible dangers, from invading pathogens to environmentally-borne dangerous chemicals. New chemicals recognisable by the immune system are engineered nanomaterials/ nanoparticles, new agents in our environment that are becoming common due to their presence in many products, from constructions and building material (e.g., solar cells, pigments and paints, tiles and masonry materials) to daily products (e.g., food packaging, cosmetics, and cigarettes). Human beings can be accidentally exposed to engineered nanomaterials when these are released from products containing them or during production in workplaces. Furthermore, intentional exposure occurs in medicine, as engineered nanoparticles are used as tools for improving delivery of drugs and vaccines, vaccine adjuvants and contrast agents in therapeutic, preventive and diagnostic strategies. Nanoparticles that come in contact with the immune system after unintentional exposure need to be eliminated from the organism as they represent a potential threat. In this case, however, due to their peculiar characteristics of size, shape, surface charge and persistence, nanoparticles may elicit undesirable reactions and have detrimental effects on the immune system, such as cytotoxicity, inflammation, anaphylaxis, immunosuppression. Conversely, nanomedicines need to escape immune recognition/elimination and must persist in the organism long enough for reaching their target and exerting their beneficial effects. Immune cells and molecules at the body surface (airway and digestive mucosae, skin) are the first that come in contact with nanomaterials upon accidental exposure, while immune effectors in blood are those that more easily come in contact with nanomedical products. Thus, evaluating the interaction of the immune system with nanoparticles/nanomaterials is a topic of key importance both in nanotoxicology and in nanomedicine. Immuno-nanosafety studies consider both accidental exposure to nanoparticles, which may occur by skin contact, ingestion or inhalation (at doses and with a frequency that are not known), and medical exposure, which takes place with a defined administration schedule (route, dose, frequency). Many studies focus on the interaction between the immune system and nanoparticles that, for medical purposes, have been specifically modified to stimulate immunity or to avoid immune recognition, as in the case of vaccine carriers/adjuvants or drug delivery systems, respectively. The aims of this Research Topic is to provide an overview of recent strategies: 1.for assessing the immunosafety of engineered nanomaterials/nanoparticles, in particular in terms of activation of inflammatory responses, such as complement activation and allergic reactions, based on the nanomaterial intrinsic characteristics and on the possible carry-over of bioactive contaminants such as LPS. Production of new nanoparticles taking into account their effects on immune responses, in order to avoid undesirable effects on one hand, and to design particles with desirable effects for medical applications on the other hand; 2.for designing more effective nanomedicines by either avoiding or exploiting their interaction with the immune systems, with particular focus on cancer diagnosis and therapy, and vaccination. This collection of articles gives a comprehensive view of the state-of-the-art of the interaction of nanoparticles with the immune system from the two perspectives of safety and medical use, and aims at providing immunologists with the relevant knowledge for designing improved strategies for immunologically safe nanomaterial applications.

Immunomodulatory Effects of Nanomaterials

Immunomodulatory Effects of Nanomaterials PDF Author: Mahmoud Elsabahy
Publisher: Woodhead Publishing
ISBN: 0323908241
Category : Technology & Engineering
Languages : en
Pages : 195

Get Book Here

Book Description
Immunomodulatory Effects of Nanomaterials: Assessment and Analysis provides an overview of the modulatory impact of nanomaterials on the immune system, as well as evaluative and analytical methods for assessing effects. Sections cover a range of common nanomaterials for biomedical use and how different properties can elicit varied responses from the immune system. The immunomodulatory effects of these materials are then discussed, with coverage on adverse and/or toxic effects on the immune system, as well as desired modulatory effects to improve efficacy of applied therapeutics. Readers will also learn about the best evaluation methods for immunomodulatory effects of nanomaterials and associated risks. This book is a useful reference for academics and researchers with an interest in immunology, but it is also idea for those working in the fields of materials science, biomedical engineering, pharmaceutical science, immunology and toxicology. Details a range of common nanomaterials and how their specific properties and characteristics interact with the immune system Discusses the immunomodulatory effects of nanomaterials, from unintentional and potentially harmful, to intentional and desired effects on the immune system Explores methods for evaluation of immunomodulatory effects of nanomaterials, as well as precautions and risks for data analysis and interpretation

Handbook Of Immunological Properties Of Engineered Nanomaterials (Second Edition) (In 3 Volumes)

Handbook Of Immunological Properties Of Engineered Nanomaterials (Second Edition) (In 3 Volumes) PDF Author: Marina A Dobrovolskaia
Publisher: World Scientific
ISBN: 9814699187
Category : Medical
Languages : en
Pages : 1184

Get Book Here

Book Description
This unique book provides comprehensive overview of the field of immunology related to engineered nanomaterials used for biomedical applications. It contains literature review, case studies and protocols. The book can serve as a source of information about nanoimmunotoxicology for both junior scientists and experts in the field. The authors have more than 10 years of experience with preclinical characterization of engineered nanomaterials used for medical applications, and they share their experience with the readers. In addition, the international team of experts in the field provides the opinion and share the expertise on individual topics related to nanoparticle physicochemical characterization, hematocompatibility, and effects on the immune cell function . The second edition contains updated chapters from the first edition plus new chapters covering areas of tumor immunology, nanoparticle interaction with lymphatic system, mathematical modeling of protein corona, utilization of nanoparticles for the delivery of antiviral drugs, extensive analysis of nanoparticle anti-inflammatory and immunosuppressive properties, novel ways of protecting therapeutic nanoparticles from the immune recognition, as well as case studies regarding nanoparticle sterilization, complement activation, protein binding and immunotherapy of cancer. The second edition comes in 3 volumes. Volume 1 is focused on nanoparticle characterization, sterility and sterilization, pyrogen contamination and depyrigenation. It also contains overview of regulatory guidelines, protocols for in vitro and in vivo immunotoxicity studies, and correlation between in vitro and in vivo immunoassays. Volume 2 is focused on hematocompatibility of nanomaterials. It provides comprehensive review and protocols for investigating nanoparticle interaction with erythrocytes, platelets, endothelial cells, plasma coagulation factors and plasma proteins forming so called 'corona' around nanoparticles. Volume 3 is dedicated to nanoparticle interaction with and effects on the immune cell function. It also contains examples of nanoparticle use for delivery of antiviral and anti-inflammatory drugs.

Adverse Effects of Engineered Nanomaterials

Adverse Effects of Engineered Nanomaterials PDF Author: Bengt Fadeel
Publisher: Academic Press
ISBN: 0128094907
Category : Medical
Languages : en
Pages : 488

Get Book Here

Book Description
Adverse Effects of Engineered Nanomaterials: Exposure, Toxicology, and Impact on Human Health, Second Edition, provides a systematic evaluation of representative engineered nanomaterials (ENM) of high volume production and their high economic importance. Each class of nanomaterials discussed includes information on what scientists, industry, regulatory agencies, and the general public need to know about nanosafety. Written by leading international experts in nanotoxicology and nanomedicine, this book gives a comprehensive view of the health impact of ENM, focusing on their potential adverse effects in exposed workers, consumers, and patients. All chapters have been updated with new sections on the endocrine system and other organ systems. In addition, other newly added sections include introductory chapters on the physio-chemical characterization of nanomaterials and interactions between nanomaterials and biological systems, as well as a new chapter that explores risk assessment and management of nanomaterials. This book fills an important need in terms of bridging the gap between experimental findings and human exposure to ENM, also detailing the clinical and pathological consequences of such exposure in the human population. Uses a schematic, non-exhaustive approach to summarizes the most important research data in this field Discusses the health implications of experimental data in nanotoxicology Presents a completely revised edition that focuses on the human health impacts of engineered nanomaterials, including many organ-specific chapters

Handbook of Immunological Properties of Engineered Nanomaterials

Handbook of Immunological Properties of Engineered Nanomaterials PDF Author: Marina Dobrovolskaia
Publisher: World Scientific
ISBN: 9814390259
Category : Medical
Languages : en
Pages : 721

Get Book Here

Book Description
The Handbook of Immunological Properties of Engineered Nanomaterials provides a comprehensive overview of the current literature, methodologies, and translational and regulatory considerations in the field of nanoimmunotoxicology. The main subject is the immunological properties of engineered nanomaterials. Focus areas include interactions between engineered nanomaterials and red blood cells, platelets, endothelial cells, professional phagocytes, T cells, B cells, dendritic cells, complement and coagulation systems, and plasma proteins, with discussions on nanoparticle sterility and sterilization. Each chapter presents a broad literature review of the given focus area, describes protocols and resources available to support research in the individual focus areas, highlights challenges, and outlines unanswered questions and future directions. In addition, the Handbook includes an overview of and serves a guide to the physicochemical characterization of engineered nanomaterials essential to conducting meaningful immunological studies of nanoparticles. Regulations related to immunotoxicity testing of materials prior to their translation into the clinic are also reviewed.The Handbook is written by top experts in the field of nanomedicine, nanotechnology, and translational bionanotechnology, representing academia, government, industry, and consulting organizations, and regulatory agencies. The Handbook is designed to serve as a textbook for students, a practical guide for research laboratories, and an informational resource for scientific consultants, reviewers, and policy makers. It is written such that both experts and beginners will find the information highly useful and applicable.

Environmental and Human Health Impacts of Nanotechnology

Environmental and Human Health Impacts of Nanotechnology PDF Author: Jamie R. Lead
Publisher: John Wiley & Sons
ISBN: 9781444307498
Category : Science
Languages : en
Pages : 456

Get Book Here

Book Description
An increased understanding of the environmental and human healthimpacts of engineered nanoparticles is essential for theresponsible development of nanotechnology and appropriateevidence-based policy and guidelines for risk assessment.Presenting the latest advances in the field from a variety ofscientific disciplines, this book offers a comprehensive overviewof this challenging, inter-disciplinary research area. Topics covered include: The properties, preparation and applications ofnanomaterials Characterization and analysis of manufacturednanoparticles The fate and behaviour of nanomaterials in aquatic, terrestrialand atmospheric environments Ecotoxicology and human toxicology of manufacturednanoparticles Occupational health and exposure of nanomaterials Risk assessment and global regulatory and policy responses Understanding the behaviour and impacts of nanotechnology in theenvironment and in human health is a daunting task and manyquestions remain to be answered. Environmental and Human HealthImpacts of Nanotechnology will serve as a valuable resource foracademic researchers in nanoscience and nanotechnology,environmental science, materials science and biology, as well asfor scientists in industry, regulators and policy makers.