Author: Peter H. Selby
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 436
Book Description
A review of plane geometry, numerical trigonometry, geometric and trigonometric analysis, and limits emphasizes the graphic representation of problems to be solved by combined methods.
Geometry and Trigonometry for Calculus
Author: Peter H. Selby
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 436
Book Description
A review of plane geometry, numerical trigonometry, geometric and trigonometric analysis, and limits emphasizes the graphic representation of problems to be solved by combined methods.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 436
Book Description
A review of plane geometry, numerical trigonometry, geometric and trigonometric analysis, and limits emphasizes the graphic representation of problems to be solved by combined methods.
Geometry with Trigonometry
Author: Patrick D Barry
Publisher: Woodhead Publishing
ISBN: 0128050675
Category : Mathematics
Languages : en
Pages : 282
Book Description
Geometry with Trigonometry Second Edition is a second course in plane Euclidean geometry, second in the sense that many of its basic concepts will have been dealt with at school, less precisely. It gets underway with a large section of pure geometry in Chapters 2 to 5 inclusive, in which many familiar results are efficiently proved, although the logical frame work is not traditional. In Chapter 6 there is a convenient introduction of coordinate geometry in which the only use of angles is to handle the perpendicularity or parallelism of lines. Cartesian equations and parametric equations of a line are developed and there are several applications. In Chapter 7 basic properties of circles are developed, the mid-line of an angle-support, and sensed distances. In the short Chaper 8 there is a treatment of translations, axial symmetries and more generally isometries. In Chapter 9 trigonometry is dealt with in an original way which e.g. allows concepts such as clockwise and anticlockwise to be handled in a way which is not purely visual. By the stage of Chapter 9 we have a context in which calculus can be developed. In Chapter 10 the use of complex numbers as coordinates is introduced and the great conveniences this notation allows are systematically exploited. Many and varied topics are dealt with , including sensed angles, sensed area of a triangle, angles between lines as opposed to angles between co-initial half-lines (duo-angles). In Chapter 11 various convenient methods of proving geometrical results are established, position vectors, areal coordinates, an original concept mobile coordinates. In Chapter 12 trigonometric functions in the context of calculus are treated. New to this edition: - The second edition has been comprehensively revised over three years - Errors have been corrected and some proofs marginally improved - The substantial difference is that Chapter 11 has been significantly extended, particularly the role of mobile coordinates, and a more thorough account of the material is given - Provides a modern and coherent exposition of geometry with trigonometry for many audiences across mathematics - Provides many geometric diagrams for a clear understanding of the text and includes problem exercises for many chapters - Generalizations of this material, such as to solid euclidean geometry and conic sections, when combined with calculus, would lead to applications in science, engineering, and elsewhere
Publisher: Woodhead Publishing
ISBN: 0128050675
Category : Mathematics
Languages : en
Pages : 282
Book Description
Geometry with Trigonometry Second Edition is a second course in plane Euclidean geometry, second in the sense that many of its basic concepts will have been dealt with at school, less precisely. It gets underway with a large section of pure geometry in Chapters 2 to 5 inclusive, in which many familiar results are efficiently proved, although the logical frame work is not traditional. In Chapter 6 there is a convenient introduction of coordinate geometry in which the only use of angles is to handle the perpendicularity or parallelism of lines. Cartesian equations and parametric equations of a line are developed and there are several applications. In Chapter 7 basic properties of circles are developed, the mid-line of an angle-support, and sensed distances. In the short Chaper 8 there is a treatment of translations, axial symmetries and more generally isometries. In Chapter 9 trigonometry is dealt with in an original way which e.g. allows concepts such as clockwise and anticlockwise to be handled in a way which is not purely visual. By the stage of Chapter 9 we have a context in which calculus can be developed. In Chapter 10 the use of complex numbers as coordinates is introduced and the great conveniences this notation allows are systematically exploited. Many and varied topics are dealt with , including sensed angles, sensed area of a triangle, angles between lines as opposed to angles between co-initial half-lines (duo-angles). In Chapter 11 various convenient methods of proving geometrical results are established, position vectors, areal coordinates, an original concept mobile coordinates. In Chapter 12 trigonometric functions in the context of calculus are treated. New to this edition: - The second edition has been comprehensively revised over three years - Errors have been corrected and some proofs marginally improved - The substantial difference is that Chapter 11 has been significantly extended, particularly the role of mobile coordinates, and a more thorough account of the material is given - Provides a modern and coherent exposition of geometry with trigonometry for many audiences across mathematics - Provides many geometric diagrams for a clear understanding of the text and includes problem exercises for many chapters - Generalizations of this material, such as to solid euclidean geometry and conic sections, when combined with calculus, would lead to applications in science, engineering, and elsewhere
Elementary College Geometry
Author: Henry Africk
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Geometry and Trigonometry
Author: Britannica Educational Publishing
Publisher: Britannica Educational Publishing
ISBN: 1622755286
Category : Juvenile Nonfiction
Languages : en
Pages : 74
Book Description
This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent and secant, and trigonometric functions that are applied to right triangles.
Publisher: Britannica Educational Publishing
ISBN: 1622755286
Category : Juvenile Nonfiction
Languages : en
Pages : 74
Book Description
This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent and secant, and trigonometric functions that are applied to right triangles.
Elementary Trigonometry
Author: Henry Sinclair Hall
Publisher: Macmillan Company of Canada
ISBN:
Category : Plane trigonometry
Languages : en
Pages : 472
Book Description
Publisher: Macmillan Company of Canada
ISBN:
Category : Plane trigonometry
Languages : en
Pages : 472
Book Description
Elementary Vector Geometry
Author: Seymour Schuster
Publisher:
ISBN: 9780471764946
Category : Geometry
Languages : en
Pages : 213
Book Description
Publisher:
ISBN: 9780471764946
Category : Geometry
Languages : en
Pages : 213
Book Description
An Elementary Geometry
Author: William Bradbury
Publisher: BoD – Books on Demand
ISBN: 3368157612
Category : Fiction
Languages : en
Pages : 122
Book Description
Reprint of the original, first published in 1872.
Publisher: BoD – Books on Demand
ISBN: 3368157612
Category : Fiction
Languages : en
Pages : 122
Book Description
Reprint of the original, first published in 1872.
Elementary Geometry for College Students
Author: Daniel C. Alexander
Publisher:
ISBN: 9780395870556
Category : Mathematics
Languages : en
Pages : 566
Book Description
Publisher:
ISBN: 9780395870556
Category : Mathematics
Languages : en
Pages : 566
Book Description
An Elementary Geometry. Plane, Solid, and Spherical, with Numerous Exercises Illustrative of the Principles of Each Book
Author: William Frothingham Bradbury
Publisher: BoD – Books on Demand
ISBN: 3385534291
Category : Fiction
Languages : en
Pages : 250
Book Description
Reprint of the original, first published in 1877.
Publisher: BoD – Books on Demand
ISBN: 3385534291
Category : Fiction
Languages : en
Pages : 250
Book Description
Reprint of the original, first published in 1877.
Geometry in Problems
Author: Alexander Shen
Publisher: American Mathematical Soc.
ISBN: 1470419211
Category : Juvenile Nonfiction
Languages : en
Pages : 229
Book Description
Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America
Publisher: American Mathematical Soc.
ISBN: 1470419211
Category : Juvenile Nonfiction
Languages : en
Pages : 229
Book Description
Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America