An Adaptive Space-time Discontinuous Galerkin Method for Reservoir Flows

An Adaptive Space-time Discontinuous Galerkin Method for Reservoir Flows PDF Author: Yashod Savithru Jayasinghe
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description
Numerical simulation has become a vital tool for predicting engineering quantities of interest in reservoir flows. However, the general lack of autonomy and reliability prevents most numerical methods from being used to their full potential in engineering analysis. This thesis presents work towards the development of an efficient and robust numerical framework for solving reservoir flow problems in a fully-automated manner. In particular, a space-time discontinuous Galerkin (DG) finite element method is used to achieve a high-order discretization on a fully unstructured space-time mesh, instead of a conventional time-marching approach. Anisotropic mesh adaptation is performed to reduce the error of a specified output of interest, by using a posteriori error estimates from the dual weighted residual method to drive a metric-based mesh optimization algorithm. An analysis of the adjoint equations, boundary conditions and solutions of the Buckley-Leverett and two-phase flow equations is presented, with the objective of developing a theoretical understanding of the adjoint behaviors of porous media models. The intuition developed from this analysis is useful for understanding mesh adaptation behaviors in more complex flow problems. This work also presents a new bottom-hole pressure well model for reservoir simulation, which relates the volumetric flow rate of the well to the reservoir pressure through a distributed source term that is independent of the discretization. Unlike Peaceman-type models which require the definition of an equivalent well-bore radius dependent on local grid length scales, this distributed well model is directly applicable to general discretizations on unstructured meshes. We show that a standard DG diffusive flux discretization of the two-phase flow equations in mass conservation form results in an unstable semi-discrete system in the advection-dominant limit, and hence propose modifications to linearly stabilize the discretization. Further, an artificial viscosity method is presented for the Buckley-Leverett and two-phase flow equations, as a means of mitigating Gibbs oscillations in high-order discretizations and ensuring convergence to physical solutions. Finally, the proposed adaptive solution framework is demonstrated on compressible two-phase flow problems in homogeneous and heterogeneous reservoirs. Comparisons with conventional time-marching methods show that the adaptive space-time DG method is significantly more efficient at predicting output quantities of interest, in terms of degrees-of-freedom required, execution time and parallel scalability.

An Adaptive Space-time Discontinuous Galerkin Method for Reservoir Flows

An Adaptive Space-time Discontinuous Galerkin Method for Reservoir Flows PDF Author: Yashod Savithru Jayasinghe
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description
Numerical simulation has become a vital tool for predicting engineering quantities of interest in reservoir flows. However, the general lack of autonomy and reliability prevents most numerical methods from being used to their full potential in engineering analysis. This thesis presents work towards the development of an efficient and robust numerical framework for solving reservoir flow problems in a fully-automated manner. In particular, a space-time discontinuous Galerkin (DG) finite element method is used to achieve a high-order discretization on a fully unstructured space-time mesh, instead of a conventional time-marching approach. Anisotropic mesh adaptation is performed to reduce the error of a specified output of interest, by using a posteriori error estimates from the dual weighted residual method to drive a metric-based mesh optimization algorithm. An analysis of the adjoint equations, boundary conditions and solutions of the Buckley-Leverett and two-phase flow equations is presented, with the objective of developing a theoretical understanding of the adjoint behaviors of porous media models. The intuition developed from this analysis is useful for understanding mesh adaptation behaviors in more complex flow problems. This work also presents a new bottom-hole pressure well model for reservoir simulation, which relates the volumetric flow rate of the well to the reservoir pressure through a distributed source term that is independent of the discretization. Unlike Peaceman-type models which require the definition of an equivalent well-bore radius dependent on local grid length scales, this distributed well model is directly applicable to general discretizations on unstructured meshes. We show that a standard DG diffusive flux discretization of the two-phase flow equations in mass conservation form results in an unstable semi-discrete system in the advection-dominant limit, and hence propose modifications to linearly stabilize the discretization. Further, an artificial viscosity method is presented for the Buckley-Leverett and two-phase flow equations, as a means of mitigating Gibbs oscillations in high-order discretizations and ensuring convergence to physical solutions. Finally, the proposed adaptive solution framework is demonstrated on compressible two-phase flow problems in homogeneous and heterogeneous reservoirs. Comparisons with conventional time-marching methods show that the adaptive space-time DG method is significantly more efficient at predicting output quantities of interest, in terms of degrees-of-freedom required, execution time and parallel scalability.

Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows

Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows PDF Author: Murat Uzunca
Publisher: Birkhäuser
ISBN: 3319301306
Category : Mathematics
Languages : en
Pages : 111

Get Book Here

Book Description
The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence.As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

Akad.navuk Belaruskaj SSR. Muzej Janki Kupaly. [Č.3:] Ministėrstva kul' tury Belaruskaj SSR. Litaráturny muzej Janki kupaly. Biblijahrafija tvoraŭ Janki Kupaly

Akad.navuk Belaruskaj SSR. Muzej Janki Kupaly. [Č.3:] Ministėrstva kul' tury Belaruskaj SSR. Litaráturny muzej Janki kupaly. Biblijahrafija tvoraŭ Janki Kupaly PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Modeling Shallow Water Flows Using the Discontinuous Galerkin Method

Modeling Shallow Water Flows Using the Discontinuous Galerkin Method PDF Author: Abdul A. Khan
Publisher: CRC Press
ISBN: 1482226022
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
This book introduces the discontinuous Galerkin (DG) method and its application to shallow water flows. The emphasis is to show details and modifications required to apply the scheme to real-world flow problems. It allows the readers to understand and develop robust and efficient computer simulation models that can be used to model flow, contaminant transport, and other factors in rivers and coastal environments. The book includes a large set of tests to illustrate the use of the model for a wide range of applications.

Space-time Discontinuous Galerkin Method for Compressible Flow

Space-time Discontinuous Galerkin Method for Compressible Flow PDF Author: Christiaan Marijn Klaij
Publisher:
ISBN: 9789036524032
Category :
Languages : en
Pages : 125

Get Book Here

Book Description


A Temporally Adaptive Hybridized Discontinuous Galerkin Method for Instationary Compressible Flows

A Temporally Adaptive Hybridized Discontinuous Galerkin Method for Instationary Compressible Flows PDF Author: Alexander Jaust
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description


Space-time Hybridized Discontinuous Galerkin Methods for Shallow Water Equations

Space-time Hybridized Discontinuous Galerkin Methods for Shallow Water Equations PDF Author: Hamidreza Arabshahi
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Get Book Here

Book Description
The non-linear shallow water equations model the dynamics of a shallow layer of an incompressible fluid; they are obtained by asymptotic analysis and depth-averaging of the Navier-Stokes equations. They are utilized in a wide range of applications, from simulation of geophysical phenomena such as river/oceanic flows and avalanches to the study of hurricane simulation, storm surge modeling, and oil spills. As a hyperbolic system of equations, shocks may develop in finite time and therefore an appropriate numerical discretization of these equations needs to be developed. The purpose of this dissertation is to develop and implement a state of the art numerical method to accurately model these equations. Therefore, a well-balanced space-time hybridized discontinuous Galerkin method was developed for our purpose. The method was implemented and tested for several benchmark problems and very promising results were obtained. An a priori error estimate for the developed method was also obtained with an optimal rate of convergence in an appropriate norm. The estimate obtained is an extension of the existing a priori error estimates in the literature, first to the case of a system of shallow water equations, second to a hybridized mixed DG method, and third to an arbitrary degree of polynomial in time.

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods PDF Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
ISBN: 3642597211
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Fundamentals of Numerical Reservoir Simulation

Fundamentals of Numerical Reservoir Simulation PDF Author: D.W. Peaceman
Publisher: Elsevier
ISBN: 0080868606
Category : Technology & Engineering
Languages : en
Pages : 191

Get Book Here

Book Description
The use of numerical reservoir simulation with high-speed electronic computers has gained wide acceptance throughout the petroleum industry for making engineering studies of a wide variety of oil and gas reservoirs throughout the world. These reservoir simulators have been designed for use by reservoir engineers who possess little or no background in the numerical mathematics upon which they are based. In spite of the efforts to improve numerical methods to make reservoir simulators as reliable, efficient, and automatic as possible, the user of a simulator is faced with a myriad of decisions that have nothing to do with the problem to be solved. This book combines a review of some basic reservoir mechanics with the derivation of the differential equations that reservoir simulators are designed to solve.

Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics

Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics PDF Author: Timothy J. Barth
Publisher: Springer Science & Business Media
ISBN: 3662051893
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
As computational fluid dynamics (CFD) is applied to ever more demanding fluid flow problems, the ability to compute numerical fluid flow solutions to a user specified tolerance as well as the ability to quantify the accuracy of an existing numerical solution are seen as essential ingredients in robust numerical simulation. Although the task of accurate error estimation for the nonlinear equations of CFD seems a daunting problem, considerable effort has centered on this challenge in recent years with notable progress being made by the use of advanced error estimation techniques and adaptive discretization methods. To address this important topic, a special course wasjointly organized by the NATO Research and Technology Office (RTO), the von Karman Insti tute for Fluid Dynamics, and the NASA Ames Research Center. The NATO RTO sponsored course entitled "Error Estimation and Solution Adaptive Discretization in CFD" was held September 10-14, 2002 at the NASA Ames Research Center and October 15-19, 2002 at the von Karman Institute in Belgium. During the special course, a series of comprehensive lectures by leading experts discussed recent advances and technical progress in the area of numerical error estimation and adaptive discretization methods with spe cific emphasis on computational fluid dynamics. The lecture notes provided in this volume are derived from the special course material. The volume con sists of 6 articles prepared by the special course lecturers.