Multiscale, Nonlinear and Adaptive Approximation

Multiscale, Nonlinear and Adaptive Approximation PDF Author: Ronald DeVore
Publisher: Springer
ISBN: 9783642424571
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
. . . . . . . . . . . . . . . . . . . 7 7 Hyperbolic partial differential equations and conservation laws . . . 8 8 Engineering collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 Thepresent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 Finalremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Publications by Wolfgang Dahmen (as of summer 2009). . . . . . . . . . . . . . . 10 The way things were in multivariate splines: A personal view. . . . . . . . . . . 19 Carl de Boor 1 Tensor product spline interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Quasiinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 MultivariateB-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Kergininterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiscale, Nonlinear and Adaptive Approximation

Multiscale, Nonlinear and Adaptive Approximation PDF Author: Ronald DeVore
Publisher: Springer
ISBN: 9783642424571
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
. . . . . . . . . . . . . . . . . . . 7 7 Hyperbolic partial differential equations and conservation laws . . . 8 8 Engineering collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 Thepresent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 Finalremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Publications by Wolfgang Dahmen (as of summer 2009). . . . . . . . . . . . . . . 10 The way things were in multivariate splines: A personal view. . . . . . . . . . . 19 Carl de Boor 1 Tensor product spline interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Quasiinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 MultivariateB-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Kergininterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Finite Element Method for Elliptic Problems

The Finite Element Method for Elliptic Problems PDF Author: P.G. Ciarlet
Publisher: Elsevier
ISBN: 0080875254
Category : Mathematics
Languages : en
Pages : 551

Get Book Here

Book Description
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.

Least-Squares Finite Element Methods

Least-Squares Finite Element Methods PDF Author: Pavel B. Bochev
Publisher: Springer Science & Business Media
ISBN: 0387689222
Category : Mathematics
Languages : en
Pages : 669

Get Book Here

Book Description
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.

Nonlinear Finite Element Analysis in Structural Mechanics

Nonlinear Finite Element Analysis in Structural Mechanics PDF Author: W. Wunderlich
Publisher: Springer Science & Business Media
ISBN: 3642815898
Category : Science
Languages : en
Pages : 782

Get Book Here

Book Description
With the rap1d development of computational capab1lities, nonl1near f1nite element analys1s 1n structural mechan1CS has become an 1mportant field of research. Its objective is the real1stic assessment of the actual behaV10r of structures by numerical methods. Th1S requires that all nonlinear effects, such as the nonl1near character1stics of the mater1al and large deformations be taken 1nto account. The act1vities in th1S f1eld be1ng worldw1de, d1rect 1nteraction between the various research groups 1S necessary to coordinate future research and to overcome the time gap between the generat10n of new results and the1r appearance 1n the 11terature. The f1rst U.S.-Germany Sympos1um was held 1n 1976 at the Massachusetts Inst1tute of Technology. Under the general to P1C "Formulat1ons and Computat1onal Algorithms in Fin1te Ele ment Analysis" 1t prov1ded an opportun1ty for about 20 re searchers from each country to present lectures, hold discus sions, and establ1sh mutual contacts. The success of th1S first sympos1um was so encourag1ng that 1t seemed natural to organ- 1ze a second bilateral meet1ng, this time 1n Germany, and to 1nv1te researchers from other European countr1es as well

The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods PDF Author: Susanne Brenner
Publisher: Springer Science & Business Media
ISBN: 1475736584
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method PDF Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723

Get Book Here

Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Adaptive Finite Element Methods for Differential Equations

Adaptive Finite Element Methods for Differential Equations PDF Author: Wolfgang Bangerth
Publisher: Birkhäuser
ISBN: 303487605X
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method PDF Author: Claes Johnson
Publisher: Courier Corporation
ISBN: 0486131599
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics

Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics PDF Author: Erwin Stein
Publisher: Springer Science & Business Media
ISBN: 3211380604
Category : Technology & Engineering
Languages : en
Pages : 368

Get Book Here

Book Description
This course with 6 lecturers intends to present a systematic survey of recent re search results of well-known scientists on error-controlled adaptive finite element methods in solid and structural mechanics with emphasis to problem-dependent concepts for adaptivity, error analysis as well as h- and p-adaptive refinement techniques including meshing and remeshing. Challenging applications are of equal importance, including elastic and elastoplastic deformations of solids, con tact problems and thin-walled structures. Some major topics should be pointed out, namely: (i) The growing importance of goal-oriented and local error estimates for quan tities of interest—in comparison with global error estimates—based on dual finite element solutions; (a) The importance of the p-version of the finite element method in conjunction with parameter-dependent hierarchical approximations of the mathematical model, for example in boundary layers of elastic plates; (Hi) The choice of problem-oriented error measures in suitable norms, consider ing residual, averaging and hierarchical error estimates in conjunction with the efficiency of the associated adaptive computations; (iv) The importance of implicit local postprocessing with enhanced test spaces in order to get constant-free, i. e. absolute-not only relative-discretizati- error estimates; (v) The coupling of error-controlled adaptive discretizations and the mathemat ical modeling in related subdomains, such as boundary layers. The main goals of adaptivity are reliability and efficiency, combined with in sight and access to controls which are independent of the applied discretization methods. By these efforts, new paradigms in Computational Mechanics should be realized, namely verifications and even validations of engineering models.

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications PDF Author: Mats G. Larson
Publisher: Springer Science & Business Media
ISBN: 3642332870
Category : Computers
Languages : en
Pages : 403

Get Book Here

Book Description
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​