An Accompaniment to Higher Mathematics

An Accompaniment to Higher Mathematics PDF Author: George R. Exner
Publisher: Springer Science & Business Media
ISBN: 9780387946177
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.

An Accompaniment to Higher Mathematics

An Accompaniment to Higher Mathematics PDF Author: George R. Exner
Publisher: Springer Science & Business Media
ISBN: 9780387946177
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.

An Accompaniment to Higher Mathematics

An Accompaniment to Higher Mathematics PDF Author: George R. Exner
Publisher: Springer Science & Business Media
ISBN: 1461239982
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.

Mathematical Reflections

Mathematical Reflections PDF Author: Peter Hilton
Publisher: Springer Science & Business Media
ISBN: 1461219329
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
A relaxed and informal presentation conveying the joy of mathematical discovery and insight. Frequent questions lead readers to see mathematics as an accessible world of thought, where understanding can turn opaque formulae into beautiful and meaningful ideas. The text presents eight topics that illustrate the unity of mathematical thought as well as the diversity of mathematical ideas. Drawn from both "pure" and "applied" mathematics, they include: spirals in nature and in mathematics; the modern topic of fractals and the ancient topic of Fibonacci numbers; Pascals Triangle and paper folding; modular arithmetic and the arithmetic of the infinite. The final chapter presents some ideas about how mathematics should be done, and hence, how it should be taught. Presenting many recent discoveries that lead to interesting open questions, the book can serve as the main text in courses dealing with contemporary mathematical topics or as enrichment for other courses. It can also be read with pleasure by anyone interested in the intellectually intriguing aspects of mathematics.

Inside Calculus

Inside Calculus PDF Author: George R. Exner
Publisher: Springer Science & Business Media
ISBN: 038722646X
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
The approach here relies on two beliefs. The first is that almost nobody fully understands calculus the first time around. The second is that graphing calculators can be used to simplify the theory of limits for students. This book presents the theoretical pieces of introductory calculus, using appropriate technology, in a style suitable to accompany almost any first calculus text. It offers a large range of increasingly sophisticated examples and problems to build an understanding of the notion of limit and other theoretical concepts. Aimed at students who will study fields in which the understanding of calculus as a tool is not sufficient, the text uses the "spiral approach" of teaching, returning again and again to difficult topics, anticipating such returns across the calculus courses in preparation for the first analysis course. Suitable as the "content" text for a transition to upper level mathematics course.

A Concrete Introduction to Higher Algebra

A Concrete Introduction to Higher Algebra PDF Author: Lindsay N. Childs
Publisher: Springer Science & Business Media
ISBN: 1441987029
Category : Mathematics
Languages : en
Pages : 540

Get Book Here

Book Description
An informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials, with much emphasis placed on congruence classes leading the way to finite groups and finite fields. New examples and theory are integrated in a well-motivated fashion and made relevant by many applications -- to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises, ranging from routine examples to extensions of theory, are scattered throughout the book, with hints and answers for many of them included in an appendix.

Introduction to Analysis

Introduction to Analysis PDF Author: Maxwell Rosenlicht
Publisher: Courier Corporation
ISBN: 0486134687
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.

Elementary Topics in Differential Geometry

Elementary Topics in Differential Geometry PDF Author: J. A. Thorpe
Publisher: Springer Science & Business Media
ISBN: 1461261538
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.

Ideals, Varieties, and Algorithms

Ideals, Varieties, and Algorithms PDF Author: David A Cox
Publisher: Springer Science & Business Media
ISBN: 0387356509
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
This book details the heart and soul of modern commutative and algebraic geometry. It covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes: a significantly updated section on Maple; updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR; and presents a shorter proof of the Extension Theorem.

Geometric Constructions

Geometric Constructions PDF Author: George E. Martin
Publisher: Springer Science & Business Media
ISBN: 1461206294
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
Geometric constructions have been a popular part of mathematics throughout history. The first chapter here is informal and starts from scratch, introducing all the geometric constructions from high school that have been forgotten or were never learned. The second chapter formalises Plato's game, and examines problems from antiquity such as the impossibility of trisecting an arbitrary angle. After that, variations on Plato's theme are explored: using only a ruler, a compass, toothpicks, a ruler and dividers, a marked rule, or a tomahawk, ending in a chapter on geometric constructions by paperfolding. The author writes in a charming style and nicely intersperses history and philosophy within the mathematics, teaching a little geometry and a little algebra along the way. This is as much an algebra book as it is a geometry book, yet since all the algebra and geometry needed is developed within the text, very little mathematical background is required. This text has been class tested for several semesters with a master's level class for secondary teachers.

The Foundations of Geometry and the Non-Euclidean Plane

The Foundations of Geometry and the Non-Euclidean Plane PDF Author: G.E. Martin
Publisher: Springer Science & Business Media
ISBN: 1461257255
Category : Mathematics
Languages : en
Pages : 525

Get Book Here

Book Description
This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.