Author: Qingquan Tony Zhang
Publisher: Springer Nature
ISBN: 3031116127
Category : Business & Economics
Languages : en
Pages : 340
Book Description
This book introduces a state-of-art approach in evaluating portfolio management and risk based on artificial intelligence and alternative data. The book covers a textual analysis of news and social media, information extraction from GPS and IoTs data, and risk predictions based on small transaction data, etc. The book summarizes and introduces the advancement in each area and highlights the machine learning and deep learning techniques utilized to achieve the goals. As a complement, it also illustrates examples on how to leverage the python package to visualize and analyze the alternative datasets, and will be of interest to academics, researchers, and students of risk evaluation, risk management, data, AI, and financial innovation.
Alternative Data and Artificial Intelligence Techniques
Author: Qingquan Tony Zhang
Publisher: Springer Nature
ISBN: 3031116127
Category : Business & Economics
Languages : en
Pages : 340
Book Description
This book introduces a state-of-art approach in evaluating portfolio management and risk based on artificial intelligence and alternative data. The book covers a textual analysis of news and social media, information extraction from GPS and IoTs data, and risk predictions based on small transaction data, etc. The book summarizes and introduces the advancement in each area and highlights the machine learning and deep learning techniques utilized to achieve the goals. As a complement, it also illustrates examples on how to leverage the python package to visualize and analyze the alternative datasets, and will be of interest to academics, researchers, and students of risk evaluation, risk management, data, AI, and financial innovation.
Publisher: Springer Nature
ISBN: 3031116127
Category : Business & Economics
Languages : en
Pages : 340
Book Description
This book introduces a state-of-art approach in evaluating portfolio management and risk based on artificial intelligence and alternative data. The book covers a textual analysis of news and social media, information extraction from GPS and IoTs data, and risk predictions based on small transaction data, etc. The book summarizes and introduces the advancement in each area and highlights the machine learning and deep learning techniques utilized to achieve the goals. As a complement, it also illustrates examples on how to leverage the python package to visualize and analyze the alternative datasets, and will be of interest to academics, researchers, and students of risk evaluation, risk management, data, AI, and financial innovation.
Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance
Author: El Bachir Boukherouaa
Publisher: International Monetary Fund
ISBN: 1589063953
Category : Business & Economics
Languages : en
Pages : 35
Book Description
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Publisher: International Monetary Fund
ISBN: 1589063953
Category : Business & Economics
Languages : en
Pages : 35
Book Description
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Big Data and Machine Learning in Quantitative Investment
Author: Tony Guida
Publisher: John Wiley & Sons
ISBN: 1119522196
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.
Publisher: John Wiley & Sons
ISBN: 1119522196
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.
Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822
Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822
Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Fintech with Artificial Intelligence, Big Data, and Blockchain
Author: Paul Moon Sub Choi
Publisher: Springer Nature
ISBN: 9813361379
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This book introduces readers to recent advancements in financial technologies. The contents cover some of the state-of-the-art fields in financial technology, practice, and research associated with artificial intelligence, big data, and blockchain—all of which are transforming the nature of how products and services are designed and delivered, making less adaptable institutions fast become obsolete. The book provides the fundamental framework, research insights, and empirical evidence in the efficacy of these new technologies, employing practical and academic approaches to help professionals and academics reach innovative solutions and grow competitive strengths.
Publisher: Springer Nature
ISBN: 9813361379
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This book introduces readers to recent advancements in financial technologies. The contents cover some of the state-of-the-art fields in financial technology, practice, and research associated with artificial intelligence, big data, and blockchain—all of which are transforming the nature of how products and services are designed and delivered, making less adaptable institutions fast become obsolete. The book provides the fundamental framework, research insights, and empirical evidence in the efficacy of these new technologies, employing practical and academic approaches to help professionals and academics reach innovative solutions and grow competitive strengths.
Digital Transformation and Industry 4.0 for Sustainable Supply Chain Performance
Author: Sachin S. Kamble
Publisher: Springer Nature
ISBN: 3031197119
Category : Technology & Engineering
Languages : en
Pages : 266
Book Description
This book provides the interplay between digital transformation, industry 4.0 technologies, and sustainable supply chain performance. The book mainly focuses on presenting case studies and empirical studies demonstrating how the industry 4.0 technologies interact with the conventional manufacturing practices such as lean manufacturing, circular economy practices, total quality management, and maintenance management, while achieving enhanced sustainable supply chain performance. The book guides the practitioners to consider the status of conventional supply chains in their organisations while designing industry 4.0 systems. This book is a useful resource for researchers and academicians to understand the interplay between existing technologies, industry 4.0 technologies, and sustainable performance in the digital transformation journey.
Publisher: Springer Nature
ISBN: 3031197119
Category : Technology & Engineering
Languages : en
Pages : 266
Book Description
This book provides the interplay between digital transformation, industry 4.0 technologies, and sustainable supply chain performance. The book mainly focuses on presenting case studies and empirical studies demonstrating how the industry 4.0 technologies interact with the conventional manufacturing practices such as lean manufacturing, circular economy practices, total quality management, and maintenance management, while achieving enhanced sustainable supply chain performance. The book guides the practitioners to consider the status of conventional supply chains in their organisations while designing industry 4.0 systems. This book is a useful resource for researchers and academicians to understand the interplay between existing technologies, industry 4.0 technologies, and sustainable performance in the digital transformation journey.
Advances and Applications of Artificial Intelligence & Machine Learning
Author: Bhuvan Unhelkar
Publisher: Springer Nature
ISBN: 9819959748
Category : Technology & Engineering
Languages : en
Pages : 783
Book Description
This volume comprises the select peer-reviewed proceedings of the International Conference on Advances and Applications of Artificial Intelligence and Machine Learning 2022 (ICAAAIML 2022). It aims to provide a comprehensive and broad-spectrum picture of state-of-the-art research and development in the areas of artificial intelligence, machine learning, deep learning, and their advanced applications in computer vision and blockchain. It also covers research in core concepts of computers, intelligent system design and deployment, real-time systems, WSN, sensors and sensor nodes, software engineering, image processing, and cloud computing. This volume will provide a valuable resource for those in academia and industry.
Publisher: Springer Nature
ISBN: 9819959748
Category : Technology & Engineering
Languages : en
Pages : 783
Book Description
This volume comprises the select peer-reviewed proceedings of the International Conference on Advances and Applications of Artificial Intelligence and Machine Learning 2022 (ICAAAIML 2022). It aims to provide a comprehensive and broad-spectrum picture of state-of-the-art research and development in the areas of artificial intelligence, machine learning, deep learning, and their advanced applications in computer vision and blockchain. It also covers research in core concepts of computers, intelligent system design and deployment, real-time systems, WSN, sensors and sensor nodes, software engineering, image processing, and cloud computing. This volume will provide a valuable resource for those in academia and industry.
Applications of Computational Intelligence in Concrete Technology
Author: Sakshi Gupta
Publisher: CRC Press
ISBN: 1000600548
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
Computational intelligence (CI) in concrete technology has not yet been fully explored worldwide because of some limitations in data sets. This book discusses the selection and separation of data sets, performance evaluation parameters for different types of concrete and related materials, and sensitivity analysis related to various CI techniques. Fundamental concepts and essential analysis for CI techniques such as artificial neural network, fuzzy system, support vector machine, and how they work together for resolving real-life problems, are explained. Features: It is the first book on this fast-growing research field. It discusses the use of various computation intelligence techniques in concrete technology applications. It explains the effectiveness of the methods used and the wide range of available techniques. It integrates a wide range of disciplines from civil engineering, construction technology, and concrete technology to computation intelligence, soft computing, data science, computer science, and so on. It brings together the experiences of contributors from around the world who are doing research in this field and explores the different aspects of their research. The technical content included is beneficial for researchers as well as practicing engineers in the concrete and construction industry.
Publisher: CRC Press
ISBN: 1000600548
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
Computational intelligence (CI) in concrete technology has not yet been fully explored worldwide because of some limitations in data sets. This book discusses the selection and separation of data sets, performance evaluation parameters for different types of concrete and related materials, and sensitivity analysis related to various CI techniques. Fundamental concepts and essential analysis for CI techniques such as artificial neural network, fuzzy system, support vector machine, and how they work together for resolving real-life problems, are explained. Features: It is the first book on this fast-growing research field. It discusses the use of various computation intelligence techniques in concrete technology applications. It explains the effectiveness of the methods used and the wide range of available techniques. It integrates a wide range of disciplines from civil engineering, construction technology, and concrete technology to computation intelligence, soft computing, data science, computer science, and so on. It brings together the experiences of contributors from around the world who are doing research in this field and explores the different aspects of their research. The technical content included is beneficial for researchers as well as practicing engineers in the concrete and construction industry.
The Elgar Companion to Applied AI Ethics
Author: Christoph Lütge
Publisher: Edward Elgar Publishing
ISBN: 1803928247
Category : Law
Languages : en
Pages : 433
Book Description
This timely Companion provides a comprehensive overview of the relationship between applied ethics and the development and use of Artificial Intelligence (AI). Adopting a holistic approach, an array of global experts identify the norms at stake, map the legal landscape, and contextualize normative expectations in relevant use cases of AI.
Publisher: Edward Elgar Publishing
ISBN: 1803928247
Category : Law
Languages : en
Pages : 433
Book Description
This timely Companion provides a comprehensive overview of the relationship between applied ethics and the development and use of Artificial Intelligence (AI). Adopting a holistic approach, an array of global experts identify the norms at stake, map the legal landscape, and contextualize normative expectations in relevant use cases of AI.
Contemporary Issues in Behavioral Finance
Author: Simon Grima
Publisher: Emerald Group Publishing
ISBN: 1787698831
Category : Business & Economics
Languages : en
Pages : 242
Book Description
This special edition of Contemporary Studies in Economic and Financial Analysis offers seventeen chapters from invited participants in the International Applied Social Science Congress, held in Turkey between the 19th and 21st April 2018.
Publisher: Emerald Group Publishing
ISBN: 1787698831
Category : Business & Economics
Languages : en
Pages : 242
Book Description
This special edition of Contemporary Studies in Economic and Financial Analysis offers seventeen chapters from invited participants in the International Applied Social Science Congress, held in Turkey between the 19th and 21st April 2018.